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We report local time-resolved thermometry 1n a silicon-nanowire quantum dot device designed to host
a linear array of spin qubits. Using two alternative measurement schemes based on rf reflectometry, we
are able to probe either local electron or bosonic bath temperatures with microsecond time scale reso-
lution and a noise-equivalent temperature of 3 mK/+/Hz. Following the application of short microwave
pulses, causing local periodic heating, time-dependent thermometry can track the dynamics of thermal
excitation and relaxation, revealing clearly different characteristic time scales. This work opens important
prospects to investigate the out-of-equilibrium thermal properties of semiconductor quantum electronic
devices operating at very low temperature. In particular, it may provide a powerful handle to understand
heating effects recently observed in semiconductor spin-qubit systems. !



Motivation

There is unintentional local heating by the high-
frequency signal used with spin qubits due to
dissipation (Joule, dielectric)
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These local temperature changes affect the spin qubits kZ

Temperature-dependence of spin qubit
P properties (Larmor frequency)

\\ Spin decay and dephasing due to
heating

Operating at higher overall temperature reduces the

effect of this unintentional local heating, but sacrifices
coherence

To improve qubits and have more qubits it is

important to understand better these local heating
effect




Devices
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Demodulation

f~400 Mhz
A~75cm

Reflected signal LC resonator
tank circuit

T RF reflectometry

Additional “quantum”
capacitance (g due to
non-uniform
electrochemical potential
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load

Adapted from Florian Vigneau et al; Probing quantum devices with
radio-frequency reflectometry. Appl. Phys. Rev. 1 June 2023; 10 (2):
e, 021305. https://doi.org/10.1063/5.0088229




RF reflectometry with LC resonator

Fitting amplitude of reflected signal

At 52 mK:
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Quantum capacitance, dot-lead situation
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Quantum capacitance, double dot situation

G5 G6 G7 G8 _
I I I I Drain

Cq(e) = a®e?

2t tanh (((aeg)Z + 4t2)1/2>
((aee)? + 4t2)3/2 2kpTp

where kgTg = Regime: t < kgTg

distribution on two

a gate lever-arm parameter
states

€ detuning in gate voltage

t tunnel coupling between the two dots (energy)
P4y and P|_, populations of |+) or |—) states
(hybridised (bonding and antibonding) states, at detuning € = 0)

Energy

e electron charge

kg Boltzmann constant
h reduced Planck constant)




Preliminary checks and setup: LC resonator
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Preliminary checks and setup: dot-lead

transition selection (setting )
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Preliminary checks and setup: temperature
sensitive regime for double quantum dot, with low

tunnel coupling (setting ) t/h = 2.03 = 0.04 GHz
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FIG. S3. Isolated double dot charge stability diagram. (a) Charge stability diagram showing "infinite’ interdot transitions.
(b) Peak amplitude and width as a function of the gate voltage, showing a way to reduce the tunnel coupling,.
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Results

I: Quantum dot
coupledto lead
(thermal bath)

lI: Quantum dot
coupled to another
quantum dot, with
tunable coupling
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Calibration of double quantum dot thermometer:
reflected signal phase at zero detuning (€ = 0)
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Noise-equivalent temperature
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FIG. S4. Noise spectrum. a) Power spectrum computed using Welchs'method”, showing a white noise spectrum with
& ¥ ot ¥ -2 < . o 5 3 5

a noise floor Sp = 1.03 + 0.09 x 107""V2. b) Phase spectral density, showing a white noise spectrum with a noise floor

Sep =3.91£0.2 ml'm],.”'\/ﬁ;
See = 3.9 £ 0.2 mrad/vVHzis the phase-noise amplitude

In the region of maximum sensitivity (temperature close to base temperature ~55 mK)

NET = 3.0 + 0.2 mK/vHz (with |65<Po
Twmc

= 1.28 mrad/mK fitted in previous plot)

Could be improved with better

impedance matching 14



Optimal tunnel
coupling depending

Noise-equivalent temperature ontemperature

Starting from the expression of (b)
reflected signal phase at zero 0
detuning fitted previously
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“Real-time” thermometry (proof of concept)

* Noise-equivalent temperature is too large to resolve temperature
fluctuations at microsecond scale

* But noise can be reduced with averaging if heating event is
periodic or deterministic/reproducible

* For example, microwave bursts used for operation of spin-qubit
devices
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Limiting bandwidths

* Response time of measurement apparatus (~ 20 ns)
* Charge relaxation time T1 toward a thermal state (~ 15 ns)

Hence few MHz resolution
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Proof of concept: periodic microwave burst on

nearby gate 15 GHz 15 GHz
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Conclusion and outlook

* “Noninvasive, nongalvanic thermometers”

* Both Fermi reservoir (dot-lead setting) and local bosonic
temperature in semiconductor guantum dot (double quantum dot
setting)

 State-of-the-art noise-equivalent temperature of 3 mK/vHz

* Temperature variations measured on microsecond scale when
averaging is possible

* Technigue demonstrated in silicon MOS device, could be applied
on other platforms: Si-Ge-based heterostructures?

19



(a) 10-10_ (b) §10-4 :
: _ -2
o qot 8105 = M Lo Ta
3 107 anlumibmBPodunl | 5107
2 o
o o
Q_‘ /5]
(]
10-12 T T T £10-6 T T T
101 10! 103 ~ 101 10! 103
Frequency (Hz) Frequency (Hz)

FIG. S4. Noise spectrum. a) Power spectrum computed using Welchs'method?, showing a white noise spectrum with
a noise floor Sp = 1.03 £ 0.09 x 10~ V2. b) Phase spectral density, showing a white noise spectrum with a noise floor

The two quadratures of the demodulator I and () are measured for different sampling frequencies to access noise
spectrum in a wide frequency range. From the noise floor we can access to the noise temperature NT :

Sp
NI = GdaB
10770 B x 4k R

(S16)

Where Sp is the noise floor, G4p is the gain in dB of the room temperature amplifier, B is the bandwidth of the
demodulator and R is the 50Q2-impedance of the transmission line. We find a NT' = 1.940.3 K, where as the cryogenic
amplifier (LNF-LNC 0.2-3 A s/n 1410Z) used in this experiment has a noise temperature of around 2 K .
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