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Device & setup

e 4-Qubit device (holes in strained Ge QW)
SiGe

e Single hole in each quantum dot Ge

* Focus on Q1 and Q2; Q3/4 remain in ground state _

» Reflectometry on charge sensors S1/2 SiGe

* AC detuning modulation = qubit rotations

* Bichromatic control — potential application:
2 microwave tones, f,,, fp, target rotations of
qubit at intersection of the two lines, with

fLarmor — fw T fb

e In this paper:

- Coherent driving of qubits with mixed frequency
signals

- Investigation of resonance anticrossings fb% A A A it ines

word lines




Latched Pauli spin blockade readout (referring to Hendrickx et al.):
Pulsing from (1,1) = (0,2) _

Interdot tunneling blocked for antiparallel states To reservolr , (0,1)
Polarized triplet states allow holes to move to same QD = (0,2)

Latc h i ng : Toreducereadoutinfidelity asaresult of spin relaxation, we make use of
charge latching through the reservoir**2, We achieve this effect by puls-
ingintotheareainthe (0,2) chargeregionboundedbytheextended(1,1)
-(0,1) (fast) and the extended (1, 1)-(1, 2) (slow) transitions (dotted
linesinFig.1e). Whentheinterdot tunnellinginto the (0, 2) charge state
is blocked, the hole in the first quantum dot will quickly tunnel into
the reservoir. This locks the spin state in the metastable (0,1) charge
state, with the decay to the (0, 2) ground state governed by the slow
tunnelling rate T, between the second quantum dot and thereservoir.

In this paper:

Initialization: Adiabatically pulse detuning From (0,2) = (1,1)
Manipulation: At €, = —20 mV (white star)
Readout: return to (0,2) charge sector and perform readout

Using latched PSB

Qubit readout

0.4 0.8

0 0.4 0.
Visibility mmmse—

Arrows: Orientations of
driving field. Amplified by
factor 5

— P2 drive is stronger




Bichromatic EDSR spectroscopy: Overview

Pulse scheme:

: Fog —WW\—
Init 4 |=P f A =P | Read-out

* In-plane B-field of 0.675T
* le = 1.514 GHZ, sz = 2.649 GHz

* Manipulation @ €;, = —20 mV

e Monochromatic transitions:
Horizontal/Vertical lines

e Bichromatic transitions: tilted resonance
lines; framed by colored (+ white) dashed
line

e Further three-photon excitations are also

observed 1 9 3 4
—> Let’s look at each type in detail.. fp4 (GHZ)

" % .

Y 'y



Monochromatic qubit transitions

Pulse scheme:

: Fog —WW\—
Init J§ |=P» f A =P | Read-out

* Horizontal/vertical transitions at fj; ,

* Q2_:Llarmor frequency of qubit 2 when
qubit 1 is in excited state

* Broad vertical excitation at fp, = 1.8 GHz:
transmission resonance in lines

— Can be used to extract exchange
interaction (conditional EDSR spectroscopy)

1 1 1 1 1 1
1.50 1.55 1.60 2.65 2.70 2.75
fpa (GHZ) fp2 (GHz)




Bichromatic qubit transitions

Pulse scheme:

: Fog —WW\—
Init J§ |=P» f A =P | Read-out

* Activated via spin-conserving (t) and spin-

flipping (1) tunneling terms which
hybridize 4 possible spin states with S(2,0) .
(@)]
= ./
« Q1P%P4; fpa+ fp2 = le (not shown, high pass) I : ) : f fp24 1 2 — 3 4
" y . y : pa (GHZ)
\ : | : P4
° Q2P2’P4: fp4_ + fpz = fQZ Tl —\r viva'4 _\P fp4: | oo (Q1+Q2)
H — 3T, -~ % N
* Q1P fpy — fpo = fou Q27 ™ Q2= ™
. Ve
Sum Diff. 1% Q’xo >
- ), /qq,'
© Q274 fpa — fpo = fo2 N & AC3
oo, | ACL a2 ,Q,LS"‘
 Andthe (Q1+Q2_ ) sum term 1 <@ | i BN
1 2 3 4




Full spectrum: include 3-photon excitations

Pulse scheme:

Init 4 |=P :Ei % =P | Read-out

Resonance between two-photon and
single-photon driving with qubit Larmor
frequency
Observed sometimes
1-Py
0.6

fp2 (GHz)

50 QzPZ, —2P4 lez, —2P4 Ql—P2,2P4 Q2—P2,2P4 (Ql + 02_)—P2,2P4
N, Ql+ Q2_)2P2‘ —P4
4.5 1
4.0 7 2P2, —P4
Q277
p 4
Q2P2. —Pa 1 2 )P2,P4
35 4 (Q1+Q —) Q:LfPZ, P4
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¥
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2.0 %
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Q2™
15 4%
X X
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¥ crossing

¥ strong anticrossing, size ~ Qt

¢ strong anticrossing, size ~ t2

® weak anticrossing



Investigation of anticrossings (I)

1-Py

Follow marked transitions closely (window 06

of +- 40 MHz)

Anticrossing (AC) 3 involves:

-> [Il) & |IT) (bichromatic) ‘\
-> [{l) & |TT) (monochromatic) “——v»‘..«——.;

-> [IT) & |TT) (monochromatic)

Strong P2 driving dresses up spin states

[1T) and |TT); in rotating frame eigenstates

become dressed as L\/J_%ITT)) and exhibit

splitting set by Rabi frequency = Autler-
Townes effect (ac Stark shift)

Resonance frequencies of the weaker
transitions are shifted by Rabi frequency of o5 0 95
the stronger transition Afpz (MHZ) Afpy (MHz)

* (Q1+Q2_)™




Investigation of anticrossings (I1)

015 0.9
L Y S —

b 02—P2. P4

 AC3&AC5, AC1&AC4 classified as strong
anticrossings (theory in supplementary):
first-order dependence on P2 driving and
second-order dependence on tunneling
amplitudes

-1.7

>
]
|

- 14

fpa (GHzZ)

Ll
©
|

* AC1 to AC5: on average spin-conserving

} iy 1. -1
tunneling energy t = (18.1 + 1.9) ueV 1 ? 3 4 5 0 2 o s
Afpp (MHz) Afpz (MHz)
and spin-flip tunneling energy () = fra (GH2) * @raz
(14.3 i 2.4)#6[/ cl—Pﬁ.izoig d Q2F2.P4
. . . . AC3 ACSH AC1 AC4
» Strong driving via P2 induces photon- T | — 1 _—
dressed spin transition, which is blocked at il ! | T I I )
resonance due to Autler-Townes shift ! I : | H 5
TR | — I* -
1 1 1
1 1 1
Jj— x| | —= — 17
Populated state e —
-25 0 25 -25 0 25
Unpopulated state Afis (MHZ) Afoz (MHzZ)
Autler-Townes ** (Q1+Q2 )%™ S 5

shifted state




Coherent Rabi control by bichromatic driving

d: as ¢, but fp, and fp, swapped

* Rabi oscillations exceed 1 MHz Off-resonant points: +4 dBm P2, +2 dBm P4

* Powers: -5dBm P2, 3 dBm P4

ina ine inj
1-P
Q12 P4 Q2-P2P4 _ Q2P2 P4 . 16.8 b f k
a { 2 2 e j n:' g.g ] M :Et glg ] W n:} g.g ]
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Changing detuning voltage

* Anticrossing diminishes in size as detuning approaches €;,™~ 0 Q1-FP4

€,, during manipulation ‘ AC2

3.8
e Bichromatic and monochromatic resonance lines fade, indicating -[
reduced efficiency of bichromatic operations as €,,2 0

|
. . .t 3.4 -
e Supports fundamental role of virtual interdot transitions as [
underlying driving mechanism |
¥ |
. . . O
Bichromatic spectroscopy at 0 detuning: 3 o
35 — 06 =
2.8 -!{
3.0 ps B
Q2_>I?
N 25
5 |
E 20 24 i
-
15
‘0 _— 1P, Afpz (MHZ) Populated state
‘ : 0.15 0.9 —f, . . Unpopulated state
1 2 3 4 ¢-9 1 e Autler—Townes
fo1 (GHz) fit Pa shifted state
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Demonstration of bichromatic control approach, mapping of different
transitions & investigation of anticrossing strengths

Dependence on detuning highlights importance of interdot motion in obtaining
bichromatic&monochromatic driving

Outlook: Optimize bichromatic driving by tuning parametrs such as interdot
coupling

summary
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Attenuation

e ata
=== filtered data

f (GHz)

Supplementary Figure 5. Attenuation caused by diplexer and fridge cables. Amplitude of the signal arriving at
the device level considering Ppy = 2.5dBm. The signal of P2 with FPps = —6dBm is approximately the same since it has 8.5
dB less attenuation on the lines. A Savitzky-Golay filter is applied on the data, the result is shown with orange-dashed line.
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Model Hamiltonian

Here we describe in details the model Hamiltonian of the two-hole double quantum dot introduced in the main
text. The matrix representation of that Hamiltonian reads:

— héw, 0 0 0 i —to i —to
0 h{)‘wz 0 0 -’-th + 15 lﬁQz + 1y
B 0 0 . 0 _ihQ), — hQ, —ihQ, — hY,
A= 0 0 0 Chw. i — O, i, — 19, | (S9)
iR —ty —ihQY. + 1o ihQ — QY —ihQ, — hQ, U — €(t) 0
iR, —ty —ihSY. + 1o ihQY — Y, —ihQY, — hCY, 0 U+ et)

The on-site Coulomb repulsion energy is denoted by /. The spin-independent interdot tunneling amplitude is
where the basis states in order are [1,1), |1, 1), |1, 1), |44, [0,2) and |2,0). We have defined the symmetric and deseribed by o, and spin-dependent tunneling due to spin-orbit inferaction is characterised by the vector {1 =
asymmetric Zeeman splittings, respectively, as fiw. = (g1 + g2)upB and héw, = %(92 — g1)ppB, where g, and g (s, 2y, 42z).

. . . ‘We anticipate that the positions of the monochromatic and bichromatic transitions in the (fp2, fpa) frequency plane,
are the g-factors of Q1 and Q2 dot, pp is the Bohr magneton and B is the magnetic field. The g-factors are assumed as well as the resonance anticrossing curves in that plane, can be described in terms of the following two combined

to depend linearly on the virtual plunger gate voltages vP1 and vP2: tunneling amplitudes:

g1 =010+ A VP1+ BvP2, gy =gs0+ AyvP1 + BovP2. (S10) te' = to +ihQ,, Q' = A(Q, + i), (S11)

where ¢, > 0 and &, &,  [0,27). We call t and Q) the spin-probability conserving and spin-probability flipping

tunnelings. The results of our present analysis are insensitive to the phase angles & and ®.. However, these phase

angles are relevant in the sense that they affect the fine structure of the resonance anticrossings, and contribute to

interference effects if additional driving mechanisms are taken into account, besides the detuning modulation in H.
In Eq. (89), the on-site energy difference (detuning) is expressed from the virtual plunger gate voltages as:

€(t) = € + 0e(t) = a(vP1 — vP2 + 6vP1(t) — 6vP2(t)). (s12)

Here, ¢ is the static component of the detuning, and de(t) is the detuning modulation, furthermore, o = 0.0917 eV /V
is the lever arm, and §vP1(t) and §vP2(t) are the ac components of the virtual plunger gate voltages describing
the driving signals. The lever-arm « deseribes how much the quantum dots’ on-site energies are changed by the
virtual plunger gate voltages, and the lever arm is the same for plungers vP1 and vP2 with good approximation. The
modulations of the virtual plunger gate voltages §vP1(t) and §vP2(t) depend on the ac signals on P4 and P2:

E’Pl(t} _ _‘71112 BIM Ep2 coswsat {813)
vP2 (3) - _‘71122 31-24 Ep4 cos :’.u‘4f ’
where Epy and Epy denote actual plunger gate voltages on P2 and P4. Hence, the detuning modulation de(f) can be
written as:
GE(U = Ct(_nflg — _HIQQ)EPQ cos u,'gt + Q‘(BIM — .'71124)EP4 cos u.'4f'- = €p3 COS u.'gf'- + €pa COSL»‘4t. (814)

where we introduced ep; = a(Mis — Mas)Eps and epy = a(Myy — Moy)Epy, while My = 0.446, Msy = 1.231,
Miy = 0.353 and Moy = 0.234, the corresponding matrix elements in Eq. S1.
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Parameters of static Hamiltonian

1.65 4
N N
I 1.60 T
= | [}
Z &
1.55 A
1.50
1.45 T
-20 -10 0 10 20 -20 -10 0 10 20
€12 (MV) €12 (MV)

Supplementary Figure 6. Inference of the parameters of the static Hamiltonian from EDSR spectroscopy. a.
Experimental EDSR spectroscopy data showing the resonance frequency fqi as function of detuning voltage €12. The pulse
sequence consisted of a pulse on P4 with ¢, ps = 118ns and Ppy = —1dBm, where its frequency fps has been swept from
1.45 to 1.75 GHz. Before and after this pulse we apply another fixed pulse on P2 with fiw p2 = 2.67 GHz, Pps = —15dBm
and t.,w p2 = 34 ns, which creates a superposition state at ;o = —20mV. Dashed line shows the fit of Eq. S15 on the data.
b. Experimental EDSR spectroscopy data showing the resonance frequency fq2 as function of the detuning voltage €12. The
pulse sequence consisted of a pulse on P2 with ¢, p2 = 118 ns and Pps = —5dBm, where its frequency fps has been swept
from 2.3 to 2.9 GHz. No additional pulse has been applied. Dashed line shows the fit of Eq. S16 on the data.

The fitting procedure is as follows. We order the spectrum of the static part of H as E; < Ey < E3 < E; < E; < Eg.
Using second-order Schrieffer-Wolff transformation [S1] on the (1,1) charge subspace, we obtain approximate results
for the resonance frequencies fg; and fgo:

A —-B 02— 1
h.le = Ez — El =] II.!.BB |:g] 0+ ! - 1€121| +27‘, — T [915)
2 U o1- el
A, - B 0?2 1
hfg:=FEs— Ey = upB {92 0+ — 2512] +2 U o (S16)
1- gzein

Note that both formulas contain four fitting parameters, and two of those fitting parameters are the same. We first
fit Eq. (S15) on the resonance curve shown in Suppl. Fig. 6a, and hence obtain these values:

2 1
=0.174, Ay — By =1.043-107% —, S17
d1,0 ; 1 1 e ( )
Pt eV, o038 L (S18)
T A ‘

Then, we insert the parameter values in Eq. (S18) into Eq. (S16), and infer the remaining two parameters of (S16)
by fitting that on the resonance curve of Suppl. Fig. 6b:

, 1
goo=02T1, Ay — By =1426-1073 — (S19)
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Floquet theory description

a 1. — —— - (195 b _‘\_
1w M i

1.05 — 5(0,2)

fra (GHz)
3
foy (GHz)

o

1.20

5(0,2)

0 0 0 t +

I tt
If ‘f_u ____________ _ Y o Y Y y W Y 1) Y ! "
-f‘-l] -------------- —_— — N fpa — 1t

fee -
________ e 1y prz_ I

Supplementary Figure 7. Electrically driven monochromatic and bichromatic transitions, and their resonance
anticrossing, described using Floquet theory. a. Measured data of the anticrossing AC1 of the monochromatic single-
photon transition Q17* and the bichromatic two-photon transition Q2F2F*. Dashed lines show the result of fitting Eq. (S32).
Marked points indicate monochromatic (purple square) and bichromatic (green triangle) transitions, and the centre of the
resonance anticrossing (blue star) at the intersection of the monochromatic and bichromatic resonances. b. Floquet level
diagram of monochromatic transition Q1¥*. The two degenerate Floquet levels are ||}, 0,0) and |1}, 0, —1), which are connected
by the electric-field matrix element of plunger P4, eps, and the two tunnelings £ and . c. Floquet level diagram of bichromatic
transition Q2F%F*4, The two degenerate Floquet levels are ||],0,0) and ||f, —1, —1), which are connected by the two electric-
field matrix elements eps, eps and the two tunnelings 2 and . d. Floquet level diagram of the anticrossing of Q224 with Q174
. The anticrossing is formed when the conditions of both monochromatic and bichromatic transitions are fulfilled, therefore the
three Floquet levels mentioned above are degenerate. For simplicity, only half of the pathways through the S(0, 2) are shown,
but the other half and the ones going through S(2,0) look similar.
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Transition Formula Measured frequency (MHz)|Calculated frequency (MHz)
Q2™ fr= 13 20.66 £ 0.05 19.0 £5.1
Q2."7? frn= 70 22.1+0.1 18.6 £5.0
Q174 fr= 18452 11.76 £ 0.04 2.0+0.8
Q1. fr= B2 5.65 + 0.02 3.0+0.8
QIF2PY | f = 2macpal(UT a0 6.24 + 0.04 0.50 £ 0.16
Q2 PP | fp = a0 1.695 + 0.008 0.40 + 0.11
QL™ | fp = 2"”"3;:'.‘5??‘-2?‘“ 4.23+0.01 0.65+0.17

VVarious tables ©

[N

Anticrossing | Resonance (1) {ﬂngn:,ﬂ} Resonance (2) |(np,.np, ) | Anticrossing size
AC1 Q1F4 (0,1) Q2F2:P4 (1,1) o 22l
AC2 Q2P (0,1) Q1P (-1,1) oc 28
AC3  [(QL+Q2)%*| (0,1) Q2 PP (-1,1) o 22l
ACA Q2F2F4 (L1)  [(Ql+Q2)P2Pi| (21) oc E2
AC5 Q2 PP (-1,1) I (-2,1) o 22l

Supplementary Table 3. Experimentally observed resonance anticrossings.

Supplementary Table 2. Comparison of measured and calculated monochromatic and bichromatic Rabi fre-
quencies. Theoretical Rabi frequencies of different monochromatic and bichromatic transitions were calculated with Floquet
theory and Schrieffer-Wolff transformation, using the spin-conserving tunneling ¢ and spin-flip tunneling ) obtained from
fitting the resonance anticrossings. The errors of the calculated frequencies originate from the uncertainties of the average
spin-conserving and spin-flip tunneling, see Supplementary Table 7.

Transiti Loh 2-photon 2-photon 3-photon 3-photon
ansthion ~photon (bichromatie) | (monochromatic) | {monochromatic) | (bichromatic)
1-photon C SAC, C C C C
2-phot
(bicl?ro?ni?ic} WAG, C C C SAC, WAC, C
2-photon ‘ .
{(monochromatic) C c SAC, WAC, C
3-photon -
(monochromatic) c WAC, C
3-photon o
(bichromatic) WAC, C

Supplementary Table 4. Anticrossings and crossings of different transitions. The intersection of monochromatic and
bichromatic processes with photon numbers from one to three can form strong anticrossings (SAC), weak anticrossings (WAC)
and crossings (C).
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More about (anti)crossings

50 QzPZ. —F4 QIPZ. —P4
01P4
4.5 1
(Q1+Q2 )"
o

4.0 4

3.5 4 (Q1+Q2 )™ Q1-F2.P4
g 02P4
C 3.0 4
& 5P2

X Q o

2.5 1 Qz—PZ. P4

2.0 4
Q2F2-F P2, P4 P2

Ql+Q2 )" Q1
15 4% S Xe—x 53
o @ ®
B T T T T T T T
1.0 1.5 2.0 25 3.0 35 4.0 4.5 5.0
foq (GHz)
®  strong anticrossing, size — O ®  crossing

3¢ strong anticrossing, size ~ t2

Supplementary Figure 8. Crossings and anticrossings of single-photon monochromatic and two-photon bichro-
matic processes. All possible single-photon monochromatic (brown lines) and two-photon bichromatic processes (yellow lines)
are shown which are observable in the shown frequency range. Strong anticrossings mediated by (1t tunnelings are shown with
blue, while the strong anticrossings mediated by 2 can be seen with purple markers. The intersections which result in crossings
are marked with black. The red circles indicate anticrossings which are investigated in detail experimentally and theoretically.
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More about (anti)crossings (Il

a b . .
€12 (mV)|zg (MHz) |yo (GHz) |t (peV
1.70 - : 1.15 1.50 (mV) |2 ( ) |vo ( )|t (weV)
-14 -7.420 2.617 14.99
1.65 BY: 5 585 9 5.
440 155 16 5.5685 2.628 16.54
i 18 | -0.800 | 2644 | 18.50
e - 160 _ -20 6.574 | 2652 | 18.01
& % -22 7.035 2.666 | 16.53
& 150 ik 165 & - . .
Supplementary Table 5. Fitting parameters of anticrossing AC2.
145
0.95 1.70
1.40 S Anticrossing| €12 (mV) |t (ueV)|Q (ueV)
' AC1 20 | 2042 | 17.10
135 0.90 1.75 AC2 22 | 1653 | 12.32
AC2 -20 18.91 15.37
Afpy (MHZ) Afpy (MHZ) AC2 -18 18.50 14.98
AC2 -16 16.54 12.34
c d AC2 14 14.90 | 10.18
1.30 4.40 1.75 AC3 -20 17.85 14.05
3.90 AC4 -20 17.77 13.95
ACSH -20 21.26 18.18
125 435 1.70
Supplementary Table 6. Calculated spin-conserving and spin-flip tunnelings using the different fitted anticross-
3.85 ings. Using Eq. (S18), the relation between { and 0 the tunneling amplitudes can be calculated from the fit results of the
= 120 4,30 1.65 = anticrossings.
T T
e e
« 3.80 o~
< 115 425 1,60 &
e 110 420 195 Average t [ueV]|Average Q [peV]
18.1 4+ 1.9 14.3+£2.4
3.70 1.05 415 1.50
-40 -20 0 20 40 Supplementary Table 7. Average hopping parameters. An average t and {2 value was calculated using the values from
Afoy (MHzZ) Afpy (MHzZ) Tab. 6.

Supplementary Figure 10. Resonance anticrossings: experiment and theory. Experimental data is identical to
that of Fig. 3 of the main text. a. Resonance anticrossing AC1, experimental data and the fitted theoretical resonance curve
(dashed) described by Eq. (S32).b. The fit of Eq. (S39) on resonance anticrossing AC4. c¢. The fit of Eq. (S45) on resonance
anticrossing AC5. d. The fit of Eq. (S51) on resonance anticrossing AC3.
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More about (anti)crossings (I1)

b
m—— theory fit
0.10 - ——data points
1.3 !
1.2 0.08 4
T T
e 1142 = 0.06 -
K. £ =
1.0 0,04 4
0.9 0.02 -
L
1 1 1 1 1
—-40 —20 0 20 40 -22 -20 -18 -16 -14
Afpz (MHZ) €12 (MV)
Supplementary Figure 11. Detuning dependence of anticrossing AC2. a. Anticrossing AC2 at €12 = —22 mV point

and the fitted theoretical resonance line Eq. S58 b. The absolute values of x 3 calculated at a constant driving (epa( fpa = 1.1
GHz)) as a function of detuning voltage €12 ranging from -22 mV to -14 mV with orange markers. The absolute value of x3
(see Eq. S55) is fitted on the datapoints, the result of the fit can be seen with blue line.
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