Crash course in resonators and...

High-impedance surface acoustic wave resonators
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Because of their small size, low loss, and compatibility with magnetic fields and elevated
temperatures, surface acoustic wave resonators hold significant potential as future quantum
interconnects. Here, we design, fabricate, and characterize GHz-frequency surface acoustic wave
resonators with the potential for strong capacitive coupling to nanoscale solid-state quantum systems,
including semiconductor quantum dots. Strong capacitive coupling to such systems requires a large
characteristic impedance, and the resonators we fabricate have impedance values above 100 Q. We
achieve such high impedance values by tightly confining a Gaussian acoustic mode. At the same time,
the resonators also have low loss, with quality factors of several thousand at millikelvin temperatures.
These high-impedance resonators are expected to exhibit large vacuum electric-field fluctuations and
have the potential for strong coupling to a variety of solid-state quantum systems.
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Cavity QED circuit QED
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A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.
Schoelkopf, Physical Review A 69, 062320 (2004).



What are the relevant parameters?

y is determined by the coherence of your 2
level system

K is determined by the confinement of your
cavity

g is determined by the nature of the

2T interaction and the resonator circuit
Y = gNZrvar/Cr
T, g ~ 4172 parameters

When g >> Kk, y then you are in the strong coupling regime and the JC Hamiltonian describes the model



ow do we measure a resonator?
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EfflClent and robust analysis of complex scattering data under noise in Charge-sensing of a Ge/Si core/shell nanowire double quantum dot using a high-
microwave resonators

_ impedance superconducting resonatorl). H. Ungerer, P. Chevalier Kwon et al
S. Probst et al Rev. Sci. Instrum. 86, 024706 (2015) Mater. Quantum. Technol. 3 031001 (2023)



L . 5
Circuit QED Circuit QED with phonons (QAD?)

— + 9z +
Hjc = hwrata + th% + hg(ato_ + ao,) Hye = hora”a + hwg > + hg(a”o- + aoy)

Cavity quantum electrodynamics for superconducting electrical circuits: An
architecture for guantum computation
A. Blais et al Physical Review A 69, 062320 (2004).

Universal Quantum Transducers Based on Surface Acoustic Waves
M. J. A. Schuetz et al Phys. Rev. X 5, 031031



The 1 port Saw resonator
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GaAs LiNbO3

V_saw 2864 m/s | 3488 m/s
C_s 1.2 pF/cm | 4.6 pF/cm
K~2 0.07 4.8

gamma -0.537 -1.08

Fabrication Parameters
Material Parameters
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Fitting the parameters
Cp from a pad only device
Simulate Cp Cg with a pad only R & R
device o Du AR 2

fit Ct and update Rp in a IDT gl ¢ l 5
device, ignoring the resonance I I
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Characterization at RT
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QRAP resonators

Figure-1 Schematic of SAW Resonators
{a) Conventinal {b) QARP Structure
Fig3a —e-9 ¢ q —8-Z X
1.4 1 I I |
_ - — X
m —~E N
= 1.2 — ~\
~ ©
= 20
— e -
o % N 3 7
©
0.8 ] ] ] 1
2 7 9 11

Electrode pairs in IDT
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Cryogenic characterization d
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Magnetic field dependence
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In conclusion =

* |t's possible to have high Z at RT * Do they really show high Z at low

* Loss of SCis not changing Q in a large temperature?

way * The substrate used does not allow for
semiconductor dots

Because of their small size, low loss, and compatibility with magnetic fields and elevated
temperatures, surface acoustic wave resonators hold significant potential as future quantum
interconnects. Here, we design, fabricate, and characterize GHz-frequency surface acoustic wave
resonators with the potential for strong capacitive coupling to nanoscale solid-state quantum systems,
including semiconductor quantum dots. Strong capacitive coupling to such systems requires a large
characteristic impedance, and the resonators we fabricate have impedance values above 100 Q. We
achieve such high impedance values by tightly confining a Gaussian acoustic mode. At the same time,
the resonators also have low loss, with quality factors of several thousand at millikelvin temperatures.
These high-impedance resonators are expected to exhibit large vacuum electric-field fluctuations and
have the potential for strong coupling to a variety of solid-state quantum systems.



