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What and why

* Edge states are described as free collective bosonic modes called
edge magnetoplasmons (EMP) that propagate along the edge with
given velocity)

* When two opposite edge states pass thru a QPC, you get a quasi
electron (integer v) or a non abelian anyon (v=1/3,2/5,5/2).

* "One proposal to evidence these non-abelian properties is to
study the absorption of microwave radiation by EMPs in an
isolated Hall island®."



Previous literature

A classic problem in mathematical physics asks “can you hear the shape of

a drum?” In this paper, we address the natural generalization: “can you hear
an anyoninadrum?”
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Overview - The device
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Lock-in amplifier

* Many QPCs to control the size of
the droplet

* Top gates to change density
* Far away ohmics (not used)

* QPC gate for injection, top gate
for reception.



Overview - The experiments

Discrete control of cavity (Fig. 2) Continuous control of cavity (Fig. 4)
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Theory - Estimating the EMP velocity

The trasmission over a cavity of lenght lis of the form exp(i k(w) ()

Where:
w [ 1 Ew?
a Kw) = v I(ﬁlwc'mt T )
Dissipation!
yw_ a ly = €'ny, [emw;

AIGaRa ST /4) + (1wt y=lodla?
2DEG

a (fit) 2.8 um

nb (n 2deg?) 1.9e-11 cm-2

d 105 nm

LO@ 1T 1.1 um

The extractedvis1e5m/s @ 1T and 2.1e4 m/s @5T

Fig.3
The model comes from M. D. Johnson and G. Vignale - Phys. Rev. B 67, 205332 (2003)



The scattering matrix
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Things | didn't like about the paper

* There is no dc hall conductance plot

* There is no picture of the device, so no information regarding the
part of RF, ground planes, CPW and so on

* The 2d plots have very low resolution

® n=193x10"cm™?

B [T]

FIG. S2. ’Low frequency’ measurement performed at 1.13kHz through Ohmic contacts. The data (blue lines) correspond to
the transverse voltage drop of the 2DEG. The sample was measured in derivation with a 22 Q resistor. The voltage is applied
at contact 2, and the measurement is done at contact 1 (see figure 1 of the main text). The red dots represent the position of
the Hall plateaus associated to an electronic density n = 1.93 x 10" em =2,



Normalization — Taking the baby and the bathwater

* No cryogenic calibarion and varying gain/noise on frequency
* The features are "small” and depend on B, everything else no.
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Table 1 | Experimental gate configuration used in fig. 2 of the

main text
vin Vo Top gates Density
ov oV 20 mv 1.93x10"cm2
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Gate copuling capacitance
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In conclusion

- Created a compact, tunable resonator with electrostatic and
magnetic control.

- Achieved good match between theory and experiment, with finite
size effects noted.

- Enabled adjustable cavity size for broad resonance studies.

- Proposed future studies on quasiparticle statistics and nonlinear
effects.



4x RF-Drive Lines

[ ]
Our device
Total attenuation:

10 MHz: 20 dB|

2GHz:31dB

8 Gz 46,48 No

amplification

B > here!

................................. RT

--------- (dB]-----------(1dB}- -------- 50k

--------- 6dB)-----------[6dB)- -------- 4k

~

If G1 G2G3 = Gl pm L*7 (circ) um R pm
1:1:2, then L 550 3850  612.7646
you are M 350 2450  389.9411
impedance s 200 1400  222.8235
matched!

)

Much longer than the paper!
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