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What and why

• Edge states are described as free collective bosonic modes called
edge magnetoplasmons (EMP) that propagate along the edge with 
given velocity)

• When two opposite edge states pass thru a QPC, you get a quasi 
electron (integer ν) or a non abelian anyon (ν=1/3,2/5,5/2).

• "One proposal to evidence these non-abelian properties is to 
study the absorption of microwave radiation by EMPs in an 
isolated Hall island²²."



Previous literature
A classic problem in mathematical physics asks “can you hear the shape of 
a drum?” In this paper, we address the natural generalization: “can you hear
an anyon in a drum?” 
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Overview - The device

• Many QPCs to control the size of 
the droplet

• Top gates to change density
• Far away ohmics (not used)
• QPC gate for injection, top gate 

for reception. 

100μm

Fig. 1



Overview - The experiments
Discrete control of cavity (Fig. 2) Continuous control of cavity (Fig. 4)

From supplementary S3 From supplementary S4



Theory - Estimating the EMP velocity

Fig.3

The trasmission over a cavity of lenght l is of the form exp(i k(ω) l)
Where:

The model comes from M. D. Johnson and G. Vignale - Phys. Rev. B 67, 205332 (2003)

a (fit) 2.8 μm

nb (n 2deg?) 1.9e-11 cm-2

d 105 nm

L0 @ 1T 1.1 μm

Dissipation!

The extracted v is 1e5 m/s @ 1T and  2.1e4 m/s @5T



The scattering matrix



Things I didn't like about the paper
• There is no dc hall conductance plot
• There is no picture of the device, so no information regarding the 

part of RF, ground planes, CPW and so on
• The 2d plots have very low resolution



Normalization – Taking the baby and the bathwater

• No cryogenic calibarion and varying gain/noise on frequency
• The features are "small" and depend on B, everything else no.

Fig S9

After



Discrete control (fig.2)



Continuous control



Gate copuling capacitance

Fig S9



In conclusion

- Created a compact, tunable resonator with electrostatic and 
magnetic control.

- Achieved good match between theory and experiment, with finite 
size effects noted.

- Enabled adjustable cavity size for broad resonance studies.
- Proposed future studies on quasiparticle statistics and nonlinear
effects.



Our device
No 
amplification
here!

t

If G1:G2:G3 =
1:1:2 , then
you are 
impedance
matched!

G1  μm L*7 (circ) μm R μm

L 550 3850 612.7646

M 350 2450 389.9411

S 200 1400 222.8235

Much longer than the paper!
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