Journal Club – Zumbühl group

Noise Correlations in a 1D Silicon Spin Qubit Array

M.B. Donnelly,^{1, 2, 3, *} J. Rowlands,^{1, 2, 3, *} L. Kranz,^{1, 2, 3} Y.L. Hsueh,^{1, 2} Y. Chung,^{1, 2, 3} A.V. Timofeev,^{3, 2} H. Geng,^{1, 2, 3} P. Singh-Gregory,¹ S.K. Gorman,^{1, 2, 3} J.G. Keizer,^{1, 2, 3} R. Rahman,^{1, 2} and M.Y. Simmons^{1, 2, 3, +}

¹ Silicon Quantum Computing Pty. Ltd., Level 2 Newton Building, UNSW Sydney, 2052, NSW Australia
 ² School of Physics, UNSW Sydney, 2052, NSW Australia
 ³ Centre for Quantum Computing and Communication Technology, UNSW Sydney, 2052, NSW Australia

Introduction & motivation

Qubit will never be fully isolated from noise

=> Solution: (quantum) error correction

Introduction & motivation

Quick reminder of error correction:

- Given a bit string: e.g. "0 1"
- Simplest error correction method:
 - Duplicate the information 0 1 => 000 111
 - If a bit differs from its 2 "companions", then flip it e.g. 010 111 => 000 111 ✓
- Problem, if there is 2 errors in the same "triplet", no correction:
 - e.g. 110 111 => 111 111 X

Introduction & motivation

• No problem!

Given the probability p to get an error is small, then probability to get 2 errors in a triplet is p²<<p

- Only true if the probability to get error are not correlated !
- Correlated errors are a bigger problem than uncorrelated error

=> Goal of the paper: investigate noise correlation in spin qubit

Device

- 10 Si:P quantum dots (QD) pairs, each controlled by a gate + tunnel coupled to a reservoir
- Spacing of ~75 nm between QD pairs
- Encapsulation with 45 nm of epitaxial Si
- Native SiO2 at the top

Device

- 10 Si:P quantum dots (QD) pairs, each controlled by a gate + tunnel coupled to a reservoir
- Spacing of ~75 nm between QD pairs
- Encapsulation with 45 nm of epitaxial Si
- Native SiO2 at the top

- Tank are connected to NbTiN LC resonator
- All connected to the same feedline

- Tank are connected to NbTiN LC resonator
- All connected to the same feedline
- Each resonator have a different frequency => different gap on S21

Jniversity

of Basel

- Tank are connected to NbTiN LC resonator
- All connected to the same feedline
- Each resonator have a different frequency => different gap on S21
- Mapping of charge stability diagram for each QD

- Choose a value of G and a range of R for which a transition is present
- Fit a gaussian: the center of the gaussian define the transition position

University of Basel

- Choose a value of R and a range of G for which a transition is present
- Fit a gaussian: the center of the gaussian define the transition position
- Track the transition position over time

Characterization of the noise

- FFT of the traces gives the Power Spectral Density PSD
- Grey part => white noise: setup noise > device noise

Noise modeling

- Tunnelling model of TLF
- ~5000 charge traps separated by ~15 nm in the native SiO2
 - => No good description given

How many parameters are free?

Simulation vs Experiment (PSD)

• Simulation give the good order of magnitude..

Noise correlation

 Magnitude-squared coherence function C_{xy}(f) uses to quantify the correlation: C_{xy}=0 => no correlation C_{xy}=1 => fully corelated

$$C_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_{xx}(f)S_{yy}(f)},$$

Noise correlation

- Magnitude-squared coherence function C_{xy}(f) uses to quantify the correlation:
 C_{xy}=0 => no correlation
 C_{xy}=1 => fully corelated
- Correlation of different pairs of QDs:
 - Highly correlated noise
 - Diminution with qubit separation
 - Fit the model for f = 1 mHz, less good for f = 0.3 or 0.6 mHz

- Noise is highly correlated in their system; probably in ours too
- Analysing noise correlation might give information about where is the noise coming from

Thank you for your attention!

Additional slides: Si(100) steps

"A regular array of steps can be produced by cutting a single crystal few degrees away from a low-index plane. If the cleavage plane is slightly misoriented from a crystallographic plane, the surface breaks up into a staircase of terraces limited by steps, and it is referred to as vicinal. The relevant parameters of the step array depend on the misorientation or miscut angle y of the vicinal surface from the low-index plane"

Additional slides: device fabrication

Additional slides: device fabrication

