

FMM talk

Christian Scheller

Electrical readout of spins in the absence of spin blockade

Felix-Ekkehard von Horstig,^{1, 2}, Lorenzo Peri,^{1, 3} Sylvain Barraud,⁴ Jason A. W. Robinson,² Monica Benito,⁵ Frederico Martins,⁶ and M. Fernando Gonzalez-Zalba¹, ¹
¹Quantum Motion, 9 Sterling Way, London, N7 9HJ, United Kingdom
²Department of Materials Sciences and Metallurgy, University of Cambridge, Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
³Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
⁴CEA, LETI, Minatec Campus, F-38054 Grenoble, France
⁵Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
⁶Hitachi Cambridge Laboratory, J.J. Thomson Avenue, CB3 0HE, United Kingdom (Dated: March 20, 2024)

FMM talk

(2022) Bloomsbury chip 3*3mm2Measured 1024 dots in 12min on area 0.1mm2Device includes control electronics

Quantum Motion Wins Bid To Deliver First Silicon Quantum Computing Prototype To NQCC

Quantum Computing Business, Research, Ukquantum Matt Swayne • February 10, 2024

FMM 05.04.2024

(2024) Quantum Motion has been selected by the UK's National Quantum Computing Centre (NQCC) to build a quantum processor test bed.

Motivation

Motivation

٠

- Hard to measure spin directly (small magn. dipole moment)
- Sizeable charge dipole due to e- tunnelling
- Sensitivities: $\sim 10 \text{ spins}/\sqrt{\text{Hz}}$ $\sim 10^{-6} \text{ electrons}/\sqrt{\text{Hz}}$
- => charge sensing + spin to charge conversion

Energy filtering

- Zeeman splitting in QD
- Selective tunnelling to lead

Spin blockade

 Selection rules in tunnelling btw. 2 particle states (rapid diabatic passage)

Problems

- Only one subset (spin) triggers detector Absence of signal => opposite spin
- Lifting of spin blockade:
 SOI (e.g holes in Ge or Si)
 other orbitals (valleys)

=> Relies on negative-result measurement

Spin blockade & lifting meachanisms

Blockade lifted by other orbital

Device: Single gate Si on insulator nanowire transistor

- Si-nanowire L*W*H = 60*120*8 nm³
- Boron-doping 5*10¹⁷ cm⁻³
- BOX: buried oxide 145 nm SiO₂
- Implantation in S/D contacts + annealing
- Gate stack
 - 1.9nm HfSiON (=> 1.3nm oxide)
 5nm TiN
 50nm polycrystalline silicon
- Study DQD: Nanowire corner QD + Boron Atom

<u>Readout</u>

- LC resonator NbTiN spiral inductor (30nH) Cc: coupling capacitor (40fF) Low pass (Star Cryoelectronics)
- Reflected signal amplified at 4K, RT
 Quadrature demodulation => amplitude & phase

<u>Setup</u>

- Dilution fridge, T = 10mK
- DC: Constantan twisted pair, RC filtered at MC
- RF: Filtered & attenuated coax to coupl. capacitor Cc
- Fast pulses: Attenuated CuNi coax via on PCB bias-T to source

Lundenberg et al., Phys. Rev. X **10**, 041010 (2020)

Quantum capacitance & SOI

of Physics

Department

Charge stability diagram

- Energy dependence of charge polarizability
 ⇒ State dependent quantum capacitance
- Detect microwave driven tunnelling btw QD/Boron – reservoirs (S/D) QD – Boron (interdot charge transition ICT)
- Device operated at $(2_B, 0_D)-(1_B, 1_D)$ transition

Magneto spectroscopy (at point R)

- Weak signal at B=0, ε =0
- Strong signal for B>0.2T, shifting with V_g (ϵ >0) => SOC lifting of SB Tunneling btw T⁻_{1,1}- S_{2,0}
- Theory: Δ_{sc} (spin conserving), Δ_{sf} (spin flip) Total rate (B=0): 10.4 GHz, Δ_{sf} s(large B)=3.4 GHz
- G-factor: from the slope $g_{avg}=2$ B-field shift Boron lead transition (not shown): $g_B \sim 1.6$, $g_D \sim 2.4$

Spin detection

3.5

Vbg (V)

<u>Gate V_g pulsing scheme</u>

- Load: (2_B,1_D)
- Pulse above lead transition: $(1_B, 1_D)$ $S_{1,1}, \uparrow, \downarrow$ or $T_{1,1}^- \downarrow, \downarrow$
- Measure C_q vs time at given detuning B=1T : $T_{1,1}^{-1}$ is ground state

2 Readout spots (pulse-depth)

- $R_A : S_{1,1} \text{ and } S_{2,0} \text{ mix}$
- R_B: T⁻_{1,1} and S_{2,0} mix (negative C_q contribution from singlet) Control pulse: load T⁻_{1,1} Wait in (1,1) for potential singlet decay

-690

-695

-700

-705 ·

3.0

Vg (mV)

• 100k pulses per detuning

<u>T₁ time (R_A)</u>

- Ring up time resonator ~80ns ⇔ BW
- Decay => T₁ ~100ns
- Control pulse flat
- R_B Ring up & decay to triplet (singlet cause delay vs control pulse)

T₁ vs detuning

Gate pulsing scheme

- Initialize $S_{1,1} / T_{1,1}$
- Wait: $S_{1,1}$ to $T_{1,1}^{-}$ relaxation
- Measure at R_A (S_{1,1} S_{2,0} transition)

T₁ vs detuning

- T_1 btw 100ns and 8µs
- Exponential dependence on detuning during wait

Orbital relaxation (SOI)

Department of Physics

Orbital relaxation

- Other transition: 2/1 e in dot, 1/0 in Boron
- QD with 2 low orbital => low energy $T_{0,2}$ possible
- C_q from S and T mixing (different detuning) S_{1,1} \Leftrightarrow S_{0,2} and T⁻_{1,1} \Leftrightarrow T⁻_{0,2}

Magnetospectroscopy

3 Regimes visible (theory)

- < 300mT spin conserve. + spin flip
- 300-600 mT spin flip tunnelling (SOC)
- >600 mT spin conserv. higher orbital $T_{1,1} \Leftrightarrow T_{0,2}$

Gate pulsing scheme

```
• Low field B=0.15T

initialize deep in (1,1): T_{1,1}^{-}

diabatic passage (T_{1,1} \Leftrightarrow S_{0,2}): T_{1,1}^{-}

readout @ T_{1,1}^{-} \Leftrightarrow T_{0,2}^{-}

control: initialize S_{0,2} (see only resonator rise time)

Decay (red) => T_1 \sim 140ns
```

```
• High field B=0.75T
```

```
initialize deep in (0,2): S_{0,2}
diabatic passage at large \varepsilon (T_{1,1} \Leftrightarrow S_{0,2}): S_{0,2}
readout @ S_{1,1} \Leftrightarrow S_{0,2}
Decay (red) => T_1 \sim 270ns
```


- Novel spin readout based on quantum capacitance
- Works in presence of SOC, orbital states
- Can detect both spin species
- Sensitivity (far from single shot)?
- Measure T_1 (100ns 8µs) vs detuning using this method