

PHYSICAL REVIEW APPLIED 19, 044010 (2023)

Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots

Cameron Spence,^{1,*} Bruna Cardoso Paz[®],¹ Vincent Michal,² Emmanuel Chanrion,¹ David J. Niegemann,¹ Baptiste Jadot[®],³ Pierre-André Mortemousque[®],³ Bernhard Klemt,¹ Vivien Thiney,¹ Benoit Bertrand[®],³ Louis Hutin,³ Christopher Bäuerle[®],¹ Maud Vinet,³ Yann-Michel Niquet,² Tristan Meunier,¹ and Matias Urdampilleta^{1,†}

¹University Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38402, France ²University Grenoble Alpes, CEA, IRIG, Grenoble 38000, France ³University Grenoble Alpes, CEA, Leti, Grenoble F-38000, France

T. Patlatiuk

21.04.2023

- characterize the charge noise in a quantum dot
- tune the charge noise 1-100 $\mu eV^2/Hz$
- identify the main sources: top interface, reservoirs
- charge noise vs dot occupancy

- electrons in silicon quantum dots (CMOS nanowires)
- coherence time given by natural/induced spin orbit interaction and charge noise (CN)
- CN is characteristics of material and qubit architecture
- CN in semiconductors induced by bistable charge traps = two level systems (TLSs):
 - dangling bonds at the semiconductor/oxide interface
 - dopants

Device Design

- 300-mm wafer
- 100 nm channel
- 60 nm wide split gate G₁, G₂
- 60 nm vertical gap
- Silicon nitride spacers (pink)
- doped leads
- Silicon bulk back gate (BG) activated by LED below 1 K, photoexcitation - minor change of CN
- metal top gate (TG)

Iniversity

Basel

- T = 300 mK
- dots form under G₁ and G₂
- spatial extension and coupling to the leads is controlled by TG and BG
- one of the dots charge sensor
- dot under G₂ as a sensor
- noise measurements: I_{SD} through dot under G₁ vs time

Charge Noise Measurements

- noise measurements: I_{SD} through dot under G₁ vs time
- FFT gives power spectral density (PSD)
- PSD normalized by dI/dV_G and lever arm
- constant PSD across Coulomb pick, 3 μeV²/Hz at 1 Hz

Charge Noise vs Dot Shape

Bottom Gate

- positive BG moves the dot vertically down, decreases G₁ capacitance (C_{G1})
- CN goes down for the dot located away from top interface
- noise origin: large number of charge traps at Si/SiO₂ interface

Top Gate

- coupling to the leads induces CN
 - modify chemical potential of the dot
 - modify tunnel barrier transparency
- possible origin
 - dopants diffused in tunnel junction
 - SiN spacer with high density of TLSs

Charge Noise vs Dot Occupancy

- CN is drastically reduced for dots with many electrons
 - increased self-capacitance
 - increased screening
- use qubit to measure CN
- extract CN from fluctuations in the tunnel rate and average dot occupancy

Charge Noise Measurements

University

of Basel

Chemical Potential Charge Noise

(f)

mean occupancy of the quantum dot

$$\langle N \rangle = \frac{\langle \tau_{N=1} \rangle}{\langle \tau_{N=1} \rangle + \langle \tau_{N=0} \rangle}$$

- $\langle \tau_{N=1} \rangle$ average time with 1 electron in the dot
- average charge noise power: 20 $\mu eV^2/Hz$

- large error bars TLS density fluctuations vs gate voltage
- many electrons, smaller charge noise
 - large N, bigger dot, farther from the interface
 - screening effects, secondary
- RF readout needed for $N_e = 4 10$ 10-1000 MHz

Conclusion

- charge noise can be strongly tunable
- for low dot occupancy CN can be extracted using single-shot readout
- disentangle chemical potential noise from tunnel coupling fluctuations

