

FMMtalk

Christian Scheller

PRX QUANTUM 4, 030309 (2023)

Gating a Quantum Dot through the Sequential Removal of Single Electrons from a Nanoscale Floating Gate

Artem O. Denisov,^{1,*} Gordian Fuchs,¹ Seong W. Oh,^{1,‡} and Jason R. Petta^{1,2,3,†}

¹Department of Physics, Princeton University, Princeton, New Jersey 08544, USA ²Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA ³Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, USA

(Received 28 February 2023; revised 15 May 2023; accepted 14 June 2023; published 21 July 2023)

We use the tip of an atomic force microscope (AFM) to charge floating metallic gates defined on the surface of a Si/SiGe heterostructure. The AFM tip serves as an ideal and movable cryogenic switch, allowing us to bias a floating gate to a specific voltage and then lock the charge on the gate by withdrawing the tip. Biasing with an AFM tip allows us to reduce the size of a quantum dot floating-gate electrode down to approximately 100 nm. Measurements of the conductance through a quantum dot formed beneath the floating gate indicate that its charge changes in discrete steps. From the statistics of the single-electron leakage events, we determine the floating-gate leakage resistance $R \sim 10^{19}$ Ohm—a value that is immeasurable by conventional means.

DOI: 10.1103/PRXQuantum.4.030309

Device

Motivation

- Problem: growing # RT control lines
- Solution: Sample-and-hold circuit (Charge floating gate)
 - Zero resistance switch
 - High electrical insulation
 - To date achieved only using FETs in: GaAs, Si/SiGe, CMOS QDs

Device:

- Accumulation-mode (undoped Si/SiGe heterostructure) 2nm Si Cap 50nm Si_{0.7}Ge_{0.3} 5nm Si quantum well
- 3 Gate Layers:
 - Al barriersB1,B2Al accumulationS,DPd plungerP (good AFM tip contact)

Discharge floating gate

Department of Physics

Floating gate discharge

Floating gate: Charged capacitor

Classical discharge: $V \sim e^{-t/RC}$ => combined RC time

QM limit: discrete Steps (single e-tunnelling) $\Delta V = e/C$ $<\Delta t > = \tau$

Operation continuous vs lock

Department of Physics

<u>Contact mode:</u> Bias gate with AFM tip (regular gate)

Charge lock:

Retract biased tip (200nm) Gate discharges over time => retraces CB peaks

Gate small => discrete discharging steps 1e tunnelling to B1(B2)

> => gate resolution limited to ~1mV (few e QD: remove few 100e from gate)

Reproducibility (φ1)

Same # discharging steps (2 missing out of 50) => mostly single e⁻ tunnelling

Operation continuous vs lock

Department of Physics

Contact mode vs charge lock:

Bias gate with AFM tip (regular gate)

Smaller CB amplitude than charge lock enhanced T_e due to AFM contact?

Capacitance of gate:

- C_g = Ne/ΔV (~14 electrons needed btw peaks) => C_g ~ 112 aF (C_{gOD} ~ 10 aF; 1 electron btw peaks added)
- C indep. V (gate geometry) Slight drop: change of QD size
- 16'000 times larger capacitance precision than previous e-counting methods
- 1000 smaller footprint floating gates compared to FET
- $\Delta t = R^*C_{stray}$ (takes 1000 longer to measure same R wit FET)

F(t) =

Fano factor definition:

 μ_t

For a counting process after time t the Fano factor is:

t: σ_t^2 :

 μ_t :

$$P(t) = \frac{e^{-\frac{t}{\tau}}}{\tau} \Rightarrow \int_0^\infty P(t)dt = 1$$

$$E = \int_0^\infty t \cdot P(t) dt = \tau$$
$$Var = \sqrt{\int_0^\infty (t - \tau)^2 \cdot P(t) dt} = \tau$$

Likelihood of an event occurring in any time interval is equal for all time:
Holding times exponentially distributed (sigma = mean)
Poisson counting process (F=1; F=0 for constant function)

time

variance

mean

Tunnelling statistics

Department of Physics

Uncorrelated electron tunneling

- Uncorrelated tunnelling: exponential waiting time distribution I = V/R = e/< τ > => < τ > ~ Δ V
- Second moment expected to be poisson-distr. (Fano factor 1)

Single layer device

Department of Physics

<u>Device</u>

- Single gate layer (S,D,P)
- No barriers
- Transistor like turn-on curve
- Floating gates sit directly on Si substrate Substrate: only leakage path
- Charge retention: Tens of e- leaking during hours
- Future: thicker oxide

- Gate locking demonstrated using AFM + floating gate
- Few 100s hold-time in QD device (interleaved gates)
- Hours hold-time in 1L device (transistor) without noticeable decay
- AFM allows for extremely small foot-print (100nm disc): 113aF, 200 electons to accumulated dot
- Very large leakage resistance to barrier determined by counting statistics (6,8e18 Ohm)
- Counting statistics: Poisson process, Fano factor = 1