FMM 11.08.2023

Department of Physics

Gating a Quantum Dot through the Sequential Removal of Single Electrons from a Nanoscale Floating Gate

Artem O. Denisov,,${ }^{1, *}$ Gordian Fuchs, ${ }^{1}$ Seong W. Oh, ${ }^{1, \ddagger}$ and Jason R. Petta $\oplus^{1,2,3, \dagger}$
${ }^{1}$ Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
${ }^{2}$ Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
${ }^{3}$ Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, USA

(0) (Received 28 February 2023; revised 15 May 2023; accepted 14 June 2023; published 21 July 2023)

We use the tip of an atomic force microscope (AFM) to charge floating metallic gates defined on the surface of a $\mathrm{Si} / \mathrm{SiGe}$ heterostructure. The AFM tip serves as an ideal and movable cryogenic switch, allowing us to bias a floating gate to a specific voltage and then lock the charge on the gate by withdrawing the tip. Biasing with an AFM tip allows us to reduce the size of a quantum dot floating-gate electrode down to approximately 100 nm . Measurements of the conductance through a quantum dot formed beneath the floating gate indicate that its charge changes in discrete steps. From the statistics of the single-electron leakage events, we determine the floating-gate leakage resistance $R \sim 10^{19} \mathrm{Ohm}-\mathrm{a}$ value that is immeasurable by conventional means.

DOI: 10.1103/PRXQuantum.4.030309

Device

Department

of Physics

Motivation

- Problem: growing \# RT control lines
- Solution: Sample-and-hold circuit (Charge floating gate)
- Zero resistance switch
- High electrical insulation
- To date achieved only using FETs in:

GaAs, Si/SiGe, CMOS QDs

Device:

- Accumulation-mode (undoped Si/SiGe heterostructure) 2 nm SiCap $50 \mathrm{~nm} \mathrm{Si}{ }_{0.7} \mathrm{Ge}_{0.3}$ 5 nm Siquantum well
- 3 Gate Layers:

Al barriers $\quad \mathrm{B} 1, \mathrm{~B} 2$
Al accumulation S,D
Pd plunger
P (good AFM tip contact)
(b)

(d) inject lock

Discharge floating gate

Floating gate discharge

Floating gate: Charged capacitor
Classical discharge:

$$
\begin{aligned}
& V \sim e^{-t / R c} \\
& =>\text { combined } R C \text { time }
\end{aligned}
$$

QM limit: discrete Steps (single e-tunnelling) $\Delta V=e / C$
$<\Delta t>=\tau$

(e)

(f)

Operation continuous vs lock

Department
of Physics

Operation continuous vs lock

of Physics

Contact mode vs charge lock:

Bias gate with AFM tip (regular gate)
Smaller CB amplitude than charge lock enhanced T_{e} due to AFM contact?

Capacitance of gate:

- $\mathrm{C}_{\mathrm{g}}=\mathrm{Ne} / \Delta \mathrm{V}$ (~ 14 electrons needed btw peaks) $\Rightarrow C_{g} \sim 112 \mathrm{aF}$
($\mathrm{C}_{\mathrm{gQD}} \sim 10 \mathrm{aF}$; 1 electron btw peaks added)
- C indep. V (gate geometry) Slight drop: change of QD size
- 16’000 times larger capacitance precision than previous e-counting methods
- 1000 smaller footprint floating gates compared to FET
- $\Delta t=R^{*} C_{\text {stray }}$ (takes 1000 longer to measure same R wit FET)

Department

Fano factor

of Physics

Fano factor definition:

For a counting process after time t the Fano factor is:

$$
F(t)=\frac{\sigma_{t}^{2}}{\mu_{t}}
$$

$t:$	time
$\sigma_{t}^{2}:$	variance
$\mu_{t}:$	mean

- Likelihood of an event occurring in any time interval is equal for all time:
=> Holding times exponentially distributed (sigma = mean)
=> Poisson counting process ($\mathrm{F}=1 ; \mathrm{F}=0$ for constant function)

$$
P(t)=\frac{e^{-\frac{t}{\tau}}}{\tau} \Rightarrow \int_{0}^{\infty} P(t) d t=1
$$

$$
\begin{aligned}
& E=\int_{0}^{\infty} t \cdot P(t) d t=\tau \\
& \operatorname{Var}=\sqrt{\int_{0}^{\infty}(t-\tau)^{2} \cdot P(t) d t}=\tau
\end{aligned}
$$

Tunnelling statistics

Department

Uncorrelated electron tunneling

- Uncorrelated tunnelling: exponential waiting time distribution

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}=\mathrm{e} /\langle\tau\rangle=><\tau>\sim \Delta \mathrm{V}
$$

- Second moment expected to be poisson-distr. (Fano factor 1)

栄少 University of Basel

Department of Physics

Device

- Single gate layer (S,D,P)
- No barriers
- Transistor like turn-on curve
- Floating gates sit directly on Si substrate Substrate: only leakage path
- Charge retention:

Tens of e- leaking during hours

- Future: thicker oxide

Single layer device

Summary

- Gate locking demonstrated using AFM + floating gate
- Few 100s hold-time in QD device (interleaved gates)
- Hours hold-time in 1L device (transistor) without noticeable decay
- AFM allows for extremely small foot-print (100nm disc): 113aF, 200 electons to accumulated dot
- Very large leakage resistance to barrier determined by counting statistics (6,8e18 Ohm)
- Counting statistics: Poisson process, Fano factor $=1$

