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The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides
a powerful tool for understanding strongly correlated physics, including phenomena
such as spin—charge separation'. Substantial theoretical efforts have attempted to
extend the LL phenomenology to two dimensions, especially in models of closely
packed arrays of 1D quantum wires” %, each being described asa LL. Such
coupled-wire models have been successfully used to construct two-dimensional (2D)
anisotropic non-Fermiliquids® ®, quantum Hall states” °, topological phases'"and
quantum spin liquids'". However, an experimental demonstration of high-quality
arrays of 1D LLs suitable for realizing these models remains absent. Here we report
the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré
superlattice made of twisted bilayer tungsten ditelluride (tWTe,). Originating from
the anisotropic lattice of the monolayer, the moiré pattern of tWTe, hosts identical,
parallel 1D electronic channels, separated by a fixed nanoscale distance, which s
tuneable by theinterlayer twist angle. At a twist angle of approximately 5 degrees, we
find that hole-doped tWTe, exhibits exceptionally large transport anisotropy with a
resistance ratio of around 1,000 between two orthogonal in-plane directions. The
across-wire conductance exhibits power-law scaling behaviours, consistent with the
formation of a 2D anisotropic phase that resembles an array of LLs. Our results open
the door for realizing a variety of correlated and topological quantum phases based
on coupled-wire models and LL physics. 1
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TheLuttinger liquid (LL))model of one-dimensional (1D) electronic systems provides
apowerful tool for understanding strongly correlated physics, including phenomena
such as spin—-charge separation’. Substantial theoretical efforts have attempted to
extend the LL phenomenology to two dimensions, especially in models of closely
packed arrays of 1D quantum wires® 3, each being described asaLL. Such

| coupled-wire models|have been successfully used to construct two-dimensional (2D)
anisotropic non-Fermiliquids*®, quantum Hall states” ?, topological phases'®"and
quantum spin liquids’*. However, an experimental demonstration of high-quality
arrays of 1D LLs suitable for realizing these models remains absent. Here we report
the |ex'perimel1tal realization of 2D arrays of 1D Ll.s|with crystalline quality in a moiré
superlattice made of twisted bilayer tungsten ditelluride (tWTe,). Originating from
the anisotropic lattice of the monolayer, the moiré pattern of tWTe, hosts identical,
parallel 1D electronic channels, separated by a fixed nanoscale distance, which is
tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we
find that hole-doped tWTe, exhibits exceptionally large transport anisotropy with a
resistance ratio of around 1,000 between two orthogonal in-plane directions. The
across-wire conductance exhibits power-law scaling behaviours, consistent with the
formation of a 2D anisotropic phase that resembles an array of LLs. Our results open
the door for realizing a variety of correlated and topological quantum phases based
on coupled-wire models and LL physics.
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Fermi liquid theory

* Low temperature description of
many metals

* |nteracting electrons = non-
interacting quasi particle (

G (A z,)
excltations -
= il
kr k kF k
Turn on the

interactions

Lecture notes: Solid state theory Manfred Sigrist 2014



Luttinger Liquids

* Fermi liquid theory breaks down in 1d

* Correct low energy model is Tomonaga |

luttinger liquid
* Dispersion is linearized around Fermi points

* Two collective excitations
(Spin-charge Separation)
* Charge

Charecteristic power-law behavior for
tunneling:

G xT%
G x VP

Witha = f8



Coupled wire models
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FIG. 1. A schematic depiction of a two-dimensional array of
quantum wires.




Coupled wire models
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Coupled wire models
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Moire Structure
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Structural analysis
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Resistance anisotropy
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Across-wire transport

* Power-law in dc-Bias voltage

* Universal scaling

* Same exponent for Vsd and T sweeps
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Doping dependence of power-law exponent
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Why across wire transport?
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Twisted WTe, Moiré
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Summary

* First realization of parallel 1d wire array on the nanoscale

* Signs of Luttinger liquid behavior
* Tunable power-law exponent (tunable interactions?)

* Future:
* New quantum hall states
* Spin —charge separation in 2D
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Fig.4|Theoretical modelling and the emergence of quasi-1D moiré bands
atthesingle-particlelevel. a, DF band structure formonolayer Wle,. Red
shading highlights the conduction band valleys at +q., about which the
continuum model analysis in b-fis performed. Results are shown for one of the
valleys. Energies are measured relative to the Fermienergy at charge neutrality.
b,c, Interlayer hopping (b) and potential terms (¢) plotted in the moiré unit cell.
These quantities are extracted from DFT calculations of untwisted bilayers
within-plane shiftd= 07 x r, valid for arigidly twisted tWle,. AAand AB indicate
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the positions of W superlattice chains (see Fig. 1b). d, Continuum model band
structure for a conduction band valley, plotted along a cutin the moiré BZ.On
hole doping, the system enters a highly anisotropic regime induced by the
moiré physics. e, Representative Bloch wavefunctionsin the quasi-1D regime
plotted inthe moiré unitcell. f, Illustrations of the quasi-1D open Fermi surfaces
for moderate hole doping, with the number of occupied quasi-1D bands
indicated.
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a Two-Probe Measurements b

Along- and Across- Wire
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Extended DataFig.3|More analysis on the transportanisotropy ondevice
no.1.a, Two-proberesistance betweenneighbouring electrodesasafunction
of n incooldown no. 1. Inset shows the contact configurations foreach
measurement, where the estimated hard direction (stripe direction) is
indicated by the grey lines (not to scale). R,;and R ;display larger values than
allothersinthe hole-doped regime, signifying the hard direction, whereas R,

shows the lowest value. Contact 1was broken during the fabrication.
Thecontactresistance playsasignificant role here. After the easy and hard

ng (102 cm-?)

0 5 10 -10 -5 0 5 10
ng (10'2 cm-2)

directions wereidentified, we performed four-probe measurements, asshown
inFig.linthe maintext.). b, Two-proberesistance across (R,3, Rs7 and Rs_g) and
along (R,5, Ry;, and Ry ) the stripesasafunctionof n,in cooldown no.2.Inset
shows the contact configurations for each measurement, where the easy
direction (alongstripes) isindicated by the grey lines (not toscale).

¢, Four-probe resistance across (“/.4:5-8; V,,: 67" and “1,4: 5-8; V. 3-2") and
along (“£4:3-6; V0 4-5", “14:3-6; V,,: 2-7", and “I 4: 2-7; V,,: 4-5") the stripes as a
functionof ngin cooldownno. 2.
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Extended DataFig. 4 |n,dependent transportanisotropy fordevicesno. 1
and no. 2. Four-proberesistance R, as afunction of nymeasured withan
excitation current applied along hard and easy directionsinlinear plots. a, data

taken for deviceno.1at1.8 K (the same data as Fig. 1i). b-d, Ryyrq, Reasy, and

Rpara/Reasyas afunction of ngat different temperatures taken fromdevice no. 1.

e-h, Thesame plots for deviceno.2.
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Extended DataFig.5|Electrostatic simulation for the four-probe contact dotsindicate the placement of voltage contacts. ¢, Predicted four-probe
configuration. a &b, Electric potential distribution for contactarrangements  anisotropy f,,=Ry,.a/Ressy s a function of the intrinsic sheet resistivity
corresponding to Ry,4and R, four-probe measurements respectively (see anisotropy B,,- For B,,=1,000, we estimate B, = 50.
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Extended DataFig. 6 | Dual-gate-dependent transportalong hard and easy directions (device no. 1, cooldown no. 1). The four-probe resistance takenat 1.8 K
(200K) along the hard and easy directions were shownina (d) and b (e), respectively. Ry, o/R.., at 1.8 K (200 K) isshownin c (f).
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Along-wire Transport

a Twisted WTe, Moiré
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Extended DataFig.8|Comp 0ss-wire
transport. a, lllustration of tWle, moiré stripes onthe electrodes (top view).

b, lllustration of transport along wires. At low /, the along-wire transportis
domi d by contact resi ¢, i.e.,tunnelling from the metal (FL) tothe
moiré wires (LL). ¢, lllustration of the across-wire transport, where the
dominant resistanceis due to interwire tunnelling in the stripe regime (i.e., LL
to LLtunnelling). d, Along-wire two-probe conductance Gasafunctionof /,
plotted inlog-logscale ataselected gate parameter. A power-law fit (solid line)
tothelow I dataisshown. e, Differential conductance d//dVtaken under the
along-wire transport configurationas a function of d.c. bias Vatdifferent 7. The

dashed line indicates a power-law trend. The dot-dash lineindicates a deviation
fromthe trend at high bias. Note that distortions, strain, unintentional doing
and other interface effects occur at the moiréin the contact regime, which
could cause the deviation. f &g, the same plot for data taken from the
across-wire transport (the same data as Fig. 2c, d), exhibiting amore robust
power-law behaviour to higherbias and /- This canbe understood asthe
dominant resistance in the across-wiretransportcomes fromthetWle,
channel regime, which ismore uniform compared to the contact regime. Data
were taken fromdeviceno. Lincooldownno. 1.
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Extended DataFig. 9| Comparison oftwo-probe and four-probe

measurementsacross the wires. Cartoonillustration of (a) two-probe (G,,)
and (b) four-probe (G,,) configurations used for the measurements.cand d, G,,
and G, as afunction of temperature taken in the hole-doped region (n,=-5.5 x
102 em *and n,=-13.5x10" cm 2, respectively). At low T (1.8 K - 25K) the trends
of G, and G,, both follow a power law and match well, demonstrating that the
power law is intrinsic to the tWTe, channel. At high T, the two trends of G,, and
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Gy deviate from each other, which canbe understood as G,, saturates due to

contactresistances whereas G,, is strongly affected by the temperature
induced changes of anisotropy. The effective geometry factor,important for
determining G,,, changes as the sample is tuned from a strongly anisotropic
phaseatlow Ttoanisotropic phase at high 7. The main analyses in this paper
are focused onthelow Tregime. The measurements were performed ondevice
no.lincooldownno.2.
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Extended DataFig.10 | Gate-tuned anisotropy cross-over. a, The across-wire
two-probe conductance G(T) displays a power-law relation (G = T*) forawide
range of doping for device no.1(cooldown no. 2). The colour of the data points
encodes n,, asshowninthe colourbar. The solid lines are the power-law
fittings, wherethe extracted exponent aisshownintheinset. Thegrey line
replots the anisotropy ratio. b, The same plots for device no. 2 (cooldownno.1).
Thegrey line replots the anisotropy ratio shownin the inset of Fig. 1h.c, The

same plots for device no. 2 (cooldown no. 2). Note that data taken from two
different cooldowns from device no. 2 shows qualitatively consistent results
with only minor quantitative differences (dashed line in the inset of cis the
exponent areplotted fromthe inset of b for comparison). Arrows to the insets
inaand cindicate the selected n,, at which thescaling analysis of the
differential conductance is performed in Extended Data Figs.11and 12,
respectively.
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Extended DataFig. 12| Additional power-lawscali lysis for devi differential conductance (d//dV)/ i* v.s.scaled bias eV/k,I. Other panelsare the
2(cooldownno.2).The corresponding n, for eachdatasetisindicatedin the same plots for different ny. As seenin the plots, inthe hole side (a-d) thedata
insetof Extended DataFig. 10c. a, lemperature dependent across-wire generally follows a power law very well, whereas near charge neutrality
two-probe conductance G (/) taken at theindicated ng. The solid line isthe (e), deviations start to develop at high bias. In the highly electron-doped region

power low fit. a’, Biasdependent differential conductance takenatthesamen, (), d//dvand Gvary onlyalittle bit (a~0) withchanging both Vand /, hence the
under different 1. The dashed line indicates the power-law trend with the same behaviourisapproximately ohmic. Dataused for Figs. 3f-hare indicatedin the
exponentaextractedina.a”, thesamedataina’,butreplotted asscaled lowest panel.
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