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Can we observe interacting electrons?

• One-dimensional (1D) systems are of interest because they give rise to phenomena not detectable in their 
higher-dimensional counterparts;

• High correlations + strong Coulomb interactions
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Tomonaga-Luttinger Liquid (TLL) model

• Consider a 1D system of interacting electrons 
• Electrons cannot pass each other;

• Due to the confinement, the motion of one electron cannot 
be modelled as a quasiparticle behaving freely (i.e. Fermi 
liquid is unstable);

• Exciting one electron will perturb the entire system (i.e. all 
modes of excitation are collective);

• Tomonaga-Luttinger Liquid (TLL) model:
• Assumes dispersion relation near the Fermi points is linear;

• Only applicable in the low-energy regime and for infinite-
length systems.
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• Can we measure the dispersion of a finite 1D system away from the Fermi points?



Excitations beyond the linear approximation

• Recent theoretical techniques to cope with curved
dispersion
Mobile-Impurity Model

• Power-law onset as for TLL (Imambekov & Glazman, 
Science (2009); Schmidt, Imambekov & Glazman, PRB 
(2010));

• Recently, we reported the observation of a momentum-
dependent power law in an interacting nonlinear TLL 
(Jin et al., Nat. Commun. 10, 2821 (2019)).

Hierarchy of Modes Model
• Length-controlled emergence of higher-order modes 

away from the Fermi points (Tsyplatyev et al. PRL 114, 
196401 2015; PRB 93, 075147 2016);

• “Replicas” should be much weaker, by ( 2/L2)n, where 
is an interaction factor and L the length of the system;

• Can we measure these effects?
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Mapping out the spectral function of the 1D system

• Bi-layer GaAs-AlGaAs heterostructure:
• Band offsets leads to 2D potential wells;

• Doping offset from wells to reduce scattering.

• Tunnelling is measured from one layer to the other.

18nm barrier
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Magnetotunnelling Spectroscopy

• Tunnelling spectroscopy allows us to probe systems by analysing their dispersion relations
• Typically done by measuring the tunnelling current between two systems while varying the energy and the 

momentum of the electrons;

𝐼 ∝ න𝑑𝒌𝑑𝐸 𝑓𝑇 𝐸 − 𝐸𝐹1𝐷 − 𝑒𝑉𝐷𝐶 − 𝑓𝑇(𝐸 − 𝐸𝐹2𝐷) × 𝐴1(𝒌, 𝐸)𝐴2(𝒌 + Τ𝑒𝑑(𝒏 × 𝑩) ℏ, 𝐸 − 𝑒𝑉𝐷𝐶)

• In-plane magnetic field adds momentum 𝜟𝒌 = Τ𝒆𝑩𝒅 ℏ;
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𝑘𝐹1 =
𝑒𝑑

2ℏ
𝐵+ − 𝐵− 𝑘𝐹2 =

𝑒𝑑

2ℏ
(𝐵+ + 𝐵−)



Magnetotunnelling Spectroscopy

• DC bias between the wells boosts in energy; 

⟹ tunnelling current when Fermi surfaces overlap.
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Magnetotunnelling Spectroscopy
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Vertical Tunnelling Device

5 μm

2 μm

10

Jin, Vianez et al., Appl. Phys. Lett. 118, 162108 (2021)

• Double QWs GaAs-AlGaAs heterostructure:



Device design

• “Split gate-mid gate” scheme
• Ohmics contact both layers

• Deplete lower 2DEG with VSG

• Induce upper wire with VMG

5 μm

SG/MG
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Device design

• “Split gate-mid gate” scheme
• Ohmics contact both layers

• Deplete lower 2DEG with VSG

• Induce upper wire with VMG
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5 μm

1D
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Device design

• “Split gate-mid gate” scheme
• Ohmics contact both layers

• Deplete lower 2DEG with VSG

• Induce upper wire with VMG

• 400x 1,1.7,3,5, 10 or 18-μm long gates
• Produces array of 1D wires in the upper layer when VWG<0

• Inject current into 1D wires (upper layer)
• Small ‘parasitic’ region ‘p’, separate (2D) behaviour

• Bar gate ensures no current reaches drain contact without 
tunnelling to lower layer

• For short wires (<3μm), avoid join at ends to get high 
uniformity

• Connect gates via air bridges

5 μm
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Microscopic air-bridge structures for connecting nanodevices

Jin, Vianez et al., Appl. Phys. Lett. 118, 162108 (2021) [Featured and Scilight]

10 μm 2 μm

1 μm 200 nm - Over 6000 bridges on-chip
- Up to 10 μm in length

(a) (b)

(c) (d)

Ti/Au

100k PMMA
copolymer

950k PMMA

Db

Dp
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2D lower well

2D upper well

𝑒𝑉𝐷𝐶 =
ℏ2

2𝑚2𝐷
∗ 𝑘𝐹1

2 − 𝑘𝐹2 ±
𝑒𝐵𝑑

ℏ

2

𝑒𝑉𝐷𝐶 =
ℏ2

2𝑚2𝐷
∗ 𝑘𝐹1 ±

𝑒𝐵𝑑

ℏ

2

− 𝑘𝐹2
2

𝑘𝐹1 =
𝑒𝑑

2ℏ
𝐵+ − 𝐵− 𝑘𝐹2 =

𝑒𝑑

2ℏ
(𝐵+ + 𝐵−)

• d is known from MBE 
• missing correction for capacitance- COMSOL simulation

⟹ extract 𝑚2𝐷
∗

Example: 2D-2D tunnelling
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Example: 2D-2D tunnelling
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Fitting parameters:

• d = 31 nm 
• 𝐶𝑈𝑊

2𝐷 = 0.047 Fm-2

• 𝐶𝐿𝑊
2𝐷 = 0.033 Fm-2

• 𝑚2𝐷
∗ = (0.062 ± 0.002)𝑚𝑒

• MBE value: d=32 nm
• 𝐶𝐶𝑂𝑀𝑆𝑂𝐿 = 0.047 Fm-2
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1D Wires

• n1D~18-55 µm-1 → 𝑟𝑠 ∝ Τ𝐸𝐶 𝐸𝐾 ~ 0.7- 4

Top QW- 1D Bottom QW-2D
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1. Two Fermi Seas for spin and charge



Spin-charge separation at high energies?

Jompol et al., Science 325, 597-602 (2009)
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1D Fermi-Hubbard model

𝐻 = −𝑡 ෍

𝑗=1,𝛼=↑,↓

𝐿/𝑎

𝑐𝑗𝛼
† 𝑐𝑗+1,𝛼 + 𝑐𝑗𝛼

† 𝑐𝑗−1,𝛼 + 𝑈෍

𝑗=1

𝐿/𝑎

𝑛𝑗↑𝑛𝑗↓

𝑐𝑗𝛼- Fermi ladder operators

𝛼 =↑, ↓- spin index

𝑛𝑗𝛼 = 𝑐𝑗𝛼
† 𝑐𝑗𝛼- density operator

𝑡- hopping amplitude
𝑈- interaction strength
𝐿- wire length
𝑎- lattice parameter a

L
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1D Fermi-Hubbard model

holon

spinon

holon Fermi sea

spinon Fermi sea

𝑘𝑗𝐿 −෍

𝑙=1

𝑀

𝜑 𝜆𝑚 − 𝑘𝑗𝑎 = 2𝜋𝐼𝑗

෍

𝑗=1

𝑁

𝜑 𝜆𝑚 − 𝑘𝑗𝑎 −෍

𝑙=1

𝑀

𝜑 Τ𝜆𝑚 2 − Τ𝜆𝑙 2 = 2𝜋𝐽𝑚

𝜑 𝑥 = −2arctan( Τ4𝑡𝑥 𝑈)- two-body scattering phase

• N non-equal integers 𝐼𝑗 and M non-equal integers 𝐽𝑚 define the solution 

for the orbital 𝑘𝑗 and the spin 𝜆𝑚 momenta of an N-electron state for a 

given value of the microscopic parameter U/t

Momentum states:
𝑘𝑗- charge d.o.f.

𝜆𝑚- spin d.o.f.

The many-body spectra of this model are found from the Lieb-Wu equations:
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• Instead of U, there is a more natural dimensionless interaction 
parameter which emerges from the Hubbard model itself 
microscopically:

𝛾 =
𝜆F
16𝑎

𝑈

𝑡

1

1 −
1
𝑁
σ
𝑙=1
𝑁/2

𝜆𝑙
2 ∞ −

𝑈
4𝑡

2

𝜆𝑙
2 ∞ +

𝑈
4𝑡

2

𝜆F= Τ4𝐿 𝑁- Fermi wavelength of the free-electron gas



Two Fermi seas
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• Spin-charge separation:
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Spin charge separation at low energies
• 𝐸𝐹~2.5 meV
• Charge mode visible up to ~4 − 5 meV

• Two different slopes ⇒ vs and vc

• parameters of the spinful (linear) TLL
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Tunnelling Dispersion Maps
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• Zero-bias anomaly:
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Tunnelling Dispersion Maps

-0.5-5

0 1 2 3 4 5

0

5

-1

0

0.5

1

V
D

C
 (

m
V
)

dG/dVDC (μS/mV)

Magnetic field B (T)

• Momentum-dependent power law:

Jin et al., Nat. Commun. 10, 2821 (2019)
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dG/dB (μS/T)
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• We express the holon and spinon effective masses as 

𝑚𝑐,𝑠 = 𝐾𝑐,𝑠𝑚2𝐷
∗

• 𝐾𝑐,𝑠 account for the renormalisation of the 
effective mass due to 1D confinement

• Simultaneously, we can extract the spinon and holon
velocities 𝑣𝑠,𝑐 ∝ Τ1 𝑚𝑐,𝑠 close to zero-bias at the +𝑘𝐹
point

• The ratio Τ𝐾𝑐 𝐾𝑠 is a good estimate of the interaction 
strength

𝐾𝑐
𝐾𝑠

=
𝑚𝑐

2𝑚𝑠
=
𝑣𝑠
𝑣𝑐
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Estimating the interaction strength
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• So far, we have only analysed dispersion maps in the 
single-subband regime

• We can also vary the number of occupied subbands up 
to 3-4, by tuning VWG
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• Assuming an unpolarized Heisenberg chain and taking and 
taking the thermodynamic limit we get:

𝛾 = 0.032
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Two Fermi seas!

O. Tsyplyatyev, Phys. Rev. B (Letter) 105, L121112 (2022)



1D-1D screening

𝛾 = 0.032
𝜆𝐹
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2. Electron mass in 1D GaAs wires



Electron mass in bulk (3D) GaAs

• Band mass of electrons in GaAs 
𝑚3𝐷
∗ = 0.067𝑚𝑒 (at low densities)

• It is well-established that in a crystal, the effective 
mass can often differ from its free-space 
counterpart by up-to several orders of magnitude

• Direct result of the electron wave function 
interfering with the ionic lattice

• Additional d.o.f.: phonons, spin waves, plasmons 
+ SOC/impurity scattering

• Raymond et al: electron effective masses in the 
range of carrier concentration 1016-1019 cm-3

A Raymond et al., J. Phys. C: Solid State Phys. 12 2289 (1979)
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Electron mass in 2D GaAs

• At a deeper level, one may wonder how strong the 
effect of the unavoidable electron-electron (e-e) 
interactions may be on their mass

• The effect of e-e interactions on the carrier mass 
can be controlled by altering the coordination 
number of the electrons 

• low-dimensional systems 

• GaAs/AlGaAs QWs (2D):
• Hatke et al., PRB 87, 161307 (2013) MIROs/MPR

• Tan et al., PRL 94, 016405 (2005) SdHs

• Coleridge et al., Surf. Sci. 361-362, 560 (1996) SdHs

• Hayne et al., PRB 46, 9515 (1992) SdHs

• Our value: 𝑚2𝐷
∗ = (0.062 ± 0.002)𝑚𝑒 @ rs~1
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• 1D changes the effect of interactions 
drastically

Fermi sea of electrons 

described by only one mass

𝑚3𝐷
∗ / 𝑚2𝐷

∗

Two Fermi seas 

for spin and charge
𝑚𝑠/𝑚𝑐

The bare electron mass, 𝑚0, given by the point where 𝑚𝑠 and 
𝑚𝑐 converge at 𝛾 = 0 (non-interacting limit)
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• Taking the best fit to the data as given by the 
1D Fermi-Hubbard model

𝑚0 = (0.0525 ± 0.0015)𝑚𝑒
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Alternatively, we can extract both m0 and γ for each individual measurement at a different rs

𝑚0 = (0.0515 ± 0.0015)𝑚𝑒
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• ms cannot be accurately extracted at higher γ (and 
higher rs) due to the ZBA

• We assume a scenario of minimal screening in order to 
estimate 𝑚0

𝑚𝑎𝑥
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3. A Hierarchy of Modes



Hierarchy of modes model

• Microscopic analysis of the nonlinear excitations via 
the Bethe ansatz

• Length-controlled emergence of higher-order 
modes away from the Fermi points (Tsyplatyev et al. 
PRL 114, 196401 (2015); PRB 93, 075147 (2016));

• “replicas” should be much weaker, by ( 2/L2)n, 
where  is an interaction factor and L the length of 
the system;

𝐴1(𝑘𝑥, 𝐸) ∝
𝑅2

𝐿2
𝑘𝐹
2𝑘𝑥

2

𝑘2 − 𝑘𝐹
2 𝛿(𝐸 − 𝜇 + 𝜉1)
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• Simulated map of the 
differential conductance 
dG/dVDC vs VDC and B, 
between a 1D non-
interacting system and a 
2DEG

Higher-order modes

A B

C

Non-interacting theory
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Higher-order modes- p0b

• We found evidence for the existence
of an inverted spinon shadow band
in the main region of the particle
sector;

Moreno et al., Nat. Commun. 7, 12784 (2016)
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Higher-order modes- p0b

dG/dB (μS/T)

A
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Higher-order modes- p1b

B
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Higher-order modes- p1b

• We find structure resembling the second-level excitations, which dies away quite rapidly at high
momentum;

• The amplitude of the signal from the second-order excitations is predicted to be smaller by a factor

of about 𝝀𝑭
𝟐/L2=2x10-4, which is higher than the noise level of our experiment.

C

1 µm
T= 300mK
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Tunnelling Dispersion Maps
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• Higher-order 1D modes:

Nonlinear TLLs:
Imambekov & Glazman, Science 2009 
Schmidt, Imambekov & Glazman, PRB 2010
Tsyplatyev et al. PRL 2015
Tsyplyatyev et al., PRB 2016
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Vianez, Tsyplyatyev, and Ford, Semiconductor nanodevices as a probe 
of strong electron correlations, Elsevier (2021) [arXiv: 2105.12063]
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• We have shown that spin-charge separation is more robust than previously 
thought, extending past the low-energy regime of the TLL model.

• By tuning the degree of screening of the Coulomb interaction and changing 
the confinement in our wires, we saw how both masses and velocities 
associated with the spinon and holon Fermi seas evolve as a function of the 
interaction strength.

• We used this result to extract the bare mass of electrons in 1D GaAs wires, a 
result about 22% smaller than the commonly reported band value.



Thank you for your time.
Any questions?
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