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Imaging gate-tunable Tomonaga-Luttinger liquids
in TH-MoSe, mirror twin boundaries
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One-dimensional electron systems exhibit fundamentally different properties than higher-dimensional systems. For example,
electron-electron interactions in one-dimensional electron systems have been predicted to induce Tomonaga-Luttinger liquid
behaviour. Naturally occurring grain boundaries in single-layer transition metal dichalcogenides exhibit one-dimensional con-
ducting channels that have been proposed to host Tomonaga-Luttinger liquids, but charge density wave physics has also been
suggested to explain their behaviour. Clear identification of the electronic ground state of this system has been hampered by
an inability to electrostatically gate such boundaries and tune their charge carrier concentration. Here we present a scanning
tunnelling microscopy and spectroscopy study of gate-tunable mirror twin boundaries in single-layer 1TH-MoSe, devices. Gating
enables scanning tunnelling microscopy and spectroscopy for different mirror twin boundary electron densities, thus allowing
precise characterization of electron-electron interaction effects. Visualization of the resulting mirror twin boundary electronic
structure allows unambiguous identification of collective density wave excitations having two velocities, in quantitative agree-
ment with the spin-charge separation predicted by finite-length Tomonaga-Luttinger liquid theory. 1



1H-MoSe, mirror twin boundaries

- Twin defect: “merger” of two lattices
- Mirror twin boundary:
- Twinning plane creates mirror
symmetries between to crystals
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Background

* Clean 1d systems are hard to make
* Hard to get strong confinement (gate definend system)

* Hard to get clean (impurities, rough potential landscape)
* (for STM) hard to access (i.e. CEO - Wires)

* Mirror Twin boundaries are:
e Easy to access with STM
e Strong confinement
* “simple” to fabricate



Background — previous work

* Dispute between Charge density wave / Luttinger liquid
* Different Type of MTBs where studied
 Whats new? Backgate for control of density
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Device

* Epitaxial Graphen on h-BN (R-PECVD)
* MoSe2 grown in MBE

e Sample is capped with Se
» Secapping-layer removed before measurement




Large scale STm measurement




Local density of states(LDOS)

e di/dV ~LDOS ~ |P(x)|?
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LUS = Lowest Unocupied State
HOS = Highest Occupied State
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“Excursion”: infinitely deep quantum well

P(x) (W)




Density dependence

* Doped silicone used as backgate

e Gap size varies with occupation

Bottom gate Vg (V)
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Vg = 60V
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Result:

* Two ways of extracting K.

* From velocities: K, =

* From Gap sizes: K.
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summary

* Mirror twin boundaries in MoSe2 host 1d systems
* Back-gate allows to study different configurations

* Interaction parameter from different methods agree well
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