

Quantum Coherence Lab Zumbühl Group

An elongated quantum dot as a distributed charge sensor

S. M. Patomäki,^{1, 2, *} J. Williams,^{1, 2} F. Berritta,³ C. Lainé,^{1, 2} M. A. Fogarty,¹ R. C. C. Leon,¹ J. Jussot,⁴ S. Kubicek,⁴ A. Chatterjee,³ B. Govoreanu,⁴ F. Kuemmeth,³ J. J. L. Morton,^{1, 2, †} and M. F. Gonzalez-Zalba^{1, ‡}

¹ Quantum Motion, 9 Sterling Way, London N7 9HJ, United Kingdom
² London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
³ Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
⁴ imec, Kapeldreef 75, B-3001 Leuven, Belgium
(Dated: January 5, 2023)

https://arxiv.org/abs/2301.01650

Journal Club, 27.01.2023

- Recent preprint form Quantum Motion team
- Reflectometry measurements on Imec Si-MOS devices
- Elongated ("jellybean") quantum dot (EQD, approx. 340 nm long) is used for sensing dots on the left&right side of the dot (separated by 510 nm from each other)

Device type (Imec)

- Si-MOS QD device (Imec) (no SEM/TEM images shown in the paper)
- n+ phosphorous doped polycrystalline silicon gates, 30 nm thick ('all-Silicon' approach, e-beam)
- Triple gate layer stack on 8 nm thermal SiO₂ film, patterned on high-R p-type Si wafer
- Gates isolated by 5nm ALD-based SiO₂

Same type of gate stack as other Imec devices (different design):

(from N. I. Dumoulin Stuyck et al., 2021 Symposium on VLSI Circuits. 2021; p. 1-2)

Their device

- Confinement for 3 possible paths connecting Ohmics
- Barriers between elongated QD (EQD), QDs and reservoirs
- Plungers to control occupation of EQD, QDs and extension of 2DEG from under accumulation gates for reservoir (R), source (S) and drain (D)

- Oxford Instruments Triton fridge
- QDevil DACs&Thermalizing filters, sample holder
- Reflectometry with a VNA:

V_{RF} drives single-e tunneling Currents between R&EQD if not in Coulomb blockade

→ complex Z of device changed → f_{res} & matching Z of resonator changed

DAC $t_{sample} = 0.1 \text{ ms}$, $f_{ramp} = 10 \text{ kHz}$ Start of DAC ramp triggers digitizer V_{IF} digitized @ 1 MS/s, preamp $f_{LP} = 10 \text{ kHz}$, $n_{avg} = 10$ \rightarrow Tint = $n_{avg}/f_{LP} = 1 \text{ ms}$

More detailed:

 $R_{\rm DC} = 49.99 \text{ k}\Omega, L = 820 \text{ nH}, \text{ and } C_{\rm c} = 22 \text{ pF}$

Single-electron box (SEB) operation

 Positive voltage at gate R → extend 2DEG close to active region of device from nearby ohmic contact

• Tune EQD plunger gate T above pinchoff, adjust tunnel rate via barrier gate B-RT:

To maximize signal, they later choose $V_{B-RT} \simeq 0.3 V$ And $V_T \simeq 0.7 V$ (not shown)

Charge sensing of quantum dots

- EQD is operated as a SEB to sense first electron transition
- Signal-to-noise ratios $SNR_{P2} = 10.7$ $SNR_{P3} = 14.6$ at one electron & 1 ms t.c. (at Sensor peak)

 Increase in V_{add} on 4th->5th electron; lowest two ±z valley-orbit states

- Shift in VT vs. SEB transition linewidth
- V_{B-T3} = 0.225 V (on)
- B-T3 off: electrons loaded via D

Charge sensing coupled quantum dots (I)

Right reservoir 2DEG extended with gate D, scan P3 vs. B-34: •

0.65

- \rightarrow honeycomb, center-center d_{right dot-EQD} = 305 nm
- Next, DQD is formed with P3 and P4: ٠ \rightarrow Latching along P3 axis, suggests P3-P4 or P4-D tunnel rates on order V_{P4} (V) 0.70 0.75 0.80 0.85 0.90 of ramp frequency
- $\rightarrow d_{right dot-EQD} = 355 \text{ nm}$ seems to be Their limit here

Charge sensing coupled quantum dots (II)

- Lastly, they form a triple dot with the EQD:
- Labels based on stability diagram simulation that uses ٠ Experimentally estimated lever arms & charging energies
- Lever arm ratios from fitted SEB peaks (red) • show close to zero P2-P3 crosstalk V_{IF} (mV)
- One SEB charge transition is capacitively • shifted by both P2 and P3 \rightarrow EQD extends approximately over region T

Simulated quantum-mechanical electron densities

- Self-consistent Schroedinger-Poisson solver to evaluate quantum-mechanical electron densities (QMED)
- \rightarrow Estimate shapes of many-electron charge states
- EQD length obtained from simulated 1σ and 2σ contours \rightarrow Studied for different #electrons (different V_T)

$$x_{\rm EQD} = an_{\rm T}^{-1/2} + b$$

a<0 n_T: sim. Electron number b = 347 nm b = 339 nm

→When only gate T is biased, the EQD length increases monotonically
 →With other gates involved, EQD length behaves more complicated (e.g. B-RT gate pulls electrons)

Summary&Outlook

- Demonstrated EQD as a rf-SEB charge sensor sensing QDs up to 355 nm away from EQD (QD-QD distance >700 nm), supported by simulations
- Potential for scalable QD unit cells, e.g. with a single sensor for multiple closeby quantum dots → novel QD unit cell layout requiring potentially less gate structures for readout
- Another potential application: Mid-ranged spin qubit coupler [1]

[1] F. Malinowski et al., Nat. Comms. 2019

