# Spin cross-correlation experiments in an electron entangler

| https://doi.org/10.1038/s41586-022-0543 | 6-z |
|-----------------------------------------|-----|
|-----------------------------------------|-----|

Received: 15 March 2022

Accepted: 10 October 2022

Published online: 23 November 2022

<sup>1</sup>Department of Physics, University of Basel, Basel, Switzerland. <sup>2</sup>NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy. <sup>3</sup>Swiss Nanoscience Institute, University of Basel, Basel, Switzerland. <sup>4</sup>Present address: Department of Physics, University of Maryland, College Park, MD, USA. <sup>Se</sup>-mail: bordoloi@umd.edu; andreas.baumgartner@unibas.ch

presented by Simon Geyer, 16/12/2022

Arunav Bordoloi<sup>1,4 \vee,</sup> Valentina Zannier<sup>2</sup>, Lucia Sorba<sup>2</sup>, Christian Schönenberger<sup>1,3</sup> & Andreas Baumgartner<sup>1,3 \vee</sup>

#### Motivation

- measure spin correlation of Cooper pairs for the first time
- towards applications with topological superconductors
- towards Bell tests with massive particles



S = titanium/aluminium

## Charge correlation

- measure  $G_i = dI_i/dV$  at bias voltage V = 0
- "DQD" diagram -> positive cross-correlation at "crossings"



d

QD1 S

 $(\mathbf{V})$ 

 $V_{g3}$ 

-SG

 $V_{g4}$ 

(<sup>1</sup>2)

200 nm

#### QD as a spin filter

in InAs NW



• at finite B: different dE for spin up vs down electron



- FSG = ferromagnetic split-gates (Permalloy)
- individual Zeeman splitting for each dot
- four possible states of FSG:
   (+,+), (+,-), (-,+) and (-,-)
- B<sub>sw1</sub> ~100mT, B<sub>sw2</sub>~25mT
   → all four states accessable with B<sub>ext</sub> sweep sequences

## CPS with FSG QD spin filters



#### Spin correlation measured in QD1

![](_page_7_Figure_1.jpeg)

- negative spin correlation
- suppressed by factor ~ 2

## Spin correlation measured in both QDs

- measure transconductance (only sensitive to correlated effects)
- simultaneous suppression of conductance for parallel spins in both QDs
   → anticorrelation
- CPS fraction:
  - conductance  $\eta_{tot} = \frac{2\Delta G^{cps}}{G_1^m + G_2^m} \approx 3\%$
  - transcond.  $\eta_{2dot} = \frac{\Delta G^{cps}}{\Delta G^{cps} + \Delta G^{other}} \approx 85\%$

![](_page_8_Figure_6.jpeg)

#### Non-ideal spin-correlation operator

- take into account non-ideal QD polarisation P
- neglect non-CPS contribution to G involving both dots

$$\langle \hat{C} \rangle_{\exp} = \frac{\Delta G_{++}^{\exp} - \Delta G_{+-}^{\exp}}{\Delta G_{++}^{\exp} + \Delta G_{+-}^{\exp}}$$

perfect correlation: +1
perfect anticorrelation: -1

$$\langle \hat{C} \rangle_{\rm exp} \approx -0.37$$

$$\overline{P} = \sqrt{P_1 P_2} \approx 60\%$$
 at  $B = 0$ 

clear anticorrelation

#### Improve QD polarisation

- homogenious  $B_{ext} < B_{sw}$  of FSG and  $B_{crit}$  of S
- P~B<sub>ext</sub>

![](_page_10_Figure_3.jpeg)

#### Conclusion

- measured spin-cross correlation of cooper pairs in 2 dots
- improved spin-cross correlation with B<sub>ext</sub>
- higher C<sub>exp</sub> possible with
  - increased QD lifetime
  - higher B<sub>ext</sub> (needs other FSG)

# Appendix

QD1 charge correlation measurement

![](_page_12_Figure_2.jpeg)

#### QD1 spin correlation measurement

![](_page_12_Figure_4.jpeg)

#### Normal metal vs superconductor

#### а b G<sub>1</sub>(e<sup>2</sup>/h) 20 x10<sup>-3</sup> G<sub>2</sub>(e<sup>2</sup>/h) 60 x10<sup>-3</sup> 10 20 40 0.38 0.38-€ 0.36 ≥ 0.36 ≥ 0.34 (2) 0.36 -2<sup>™</sup> 0.34 -0.32-0.32 -2.06 -2.08 -2.04 -2.08 -2.06 -2.04 $V_{g1}(V)$ $V_{g1}(V)$ x10<sup>-3</sup> x10<sup>-3</sup> С B = +150 mT d *B* = 0 - 80 80 74 28 $G_1^m(e^2/h)$ $G_1^m$ (e<sup>2</sup>/h) $G_2(e^2/h)$ G<sub>2</sub>(e<sup>2</sup>/h) 4 70 24 66 20 x10<sup>-3</sup> x10<sup>-3</sup>

0.32

0.36

 $V_{\rm g2}\left(V
ight)$ 

0.36

 $V_{g2}(V)$ 

0.32

Conductance

#### Transconductance

![](_page_13_Figure_3.jpeg)

#### Other transport mechanisms

![](_page_14_Figure_1.jpeg)