Single-electron spin resonance in a nanoelectronic device using a global field

E. Vahapoglu^{1,*}, J. P. Slack-Smith^{1,*}, R. C. C. Leon¹, W. H. Lim¹, F. E. Hudson¹, T. Day¹, T. Tanttu¹, C. H. Yang¹, A. Laucht¹, A. S. Dzurak^{1,†}, and J. J. Pla^{1,†}

¹School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. ^{*,†}These authors contributed equally to this work

> Spin Journal Club Simon Svab, 15.02.2021

[1] R. Zhao et al., Nat. Comm. 10, 5500 (2019) [2] R. C. Leon et al., Nat. Comm. 11, 797 (2020)

Motivating challenge: Scalability of qubit control

How to deliver microwave control signals to many qubits simultaneously, without disturbing cryogenic environment of processor?

ESR via on-chip transmission line (TL)

- \rightarrow Multiple high-frequency coax lines needed
- \rightarrow Large microwave currents (heating)

EDSR via nanomagnets (electrons)

RES

²⁸Si [1] \rightarrow Similar challenges as with TL-

[110]

Co (MW)

based ESR; scaling of coaxial lines for qubit control

CB

[2]

Vision of this paper: ESR with a global field

- \rightarrow Single microwave source
- \rightarrow No direct passage of strong highfrequency currents through processor

Dielectric Resonator Setup

 $B_1 = C\sqrt{P}$ $C \propto \sqrt{Q/\omega V}$ $\omega \propto 1/(\sqrt{\varepsilon_r} V^{1/3})$

C: Conversion factor Q: Quality factor of resonator V: Mode volume

- \rightarrow High Q, low V resonator desirable
- ightarrow Minimize electric field at the chip
- \rightarrow KTO: $\varepsilon_{\rm r}\approx 4,300$ for T < 10 K, low losses
- → Operated in $TE_{11\delta}$ mode (B₁ strongest along central axis, extends outside of DR)
- → Q \approx 500 for device (Q \approx 60'000 without chip)

Device

- ^{nat}Si (≈4.7% ²⁹Si) MOS DQD device
- Pd gate stack architecture (fabricated as in Ref. [1], but without MW transmission line)

[1] R. Zhao et al., Nat. Comm. 10, 5500 (2019)

PSB Search & Spin Readout

30'000 single-shot measurements at point D (without ESR-step)

ESR in a global field

- Resonance condition: $f_{
 m res} = g \mu_{
 m B} B_0 / h$
- P_a, P_b: Double QD system
- P_c: unintended spin state in vicinity
- $g_a \approx 1.935, g_b \approx 1.939, g_c \approx 1.940$
- Visibility of P_a and P_b is enhanced within bandwidth of resonator $TE_{11\delta}$ mode

Summary

- Demonstration of ESR with a global field
- Limitation: Powers exceeding -32 dBm lead to switches in the SET current; prevents increasing power beyond ESR linewidths (here 2 to 4 MHz)

Outlook: Reduce required power for coherent spin control

- Move to isotopically-purified substrate to reduce broadening of ESR peaks
- Improve quality factor of dielectric resonator & device assembly (material limit: Q ≈60'000)

