

Basel Precision Instruments GmbH

Scientific Laboratory Instrumentation Enabling the 2nd Quantum Revolution

Zumbühl lab group meeting July 16th, 2021

Giving Researchers a Better Lens into the Quantum World

Founded in 2018, BASPI is commercializing the lab instruments behind the **world's coldest chip at < 0.25 mK** at the Zumbühl group at Uni Basel (Samani *et.al.,* APS MM S59.06)

BASPI's premium electronics and cryogenic filters make sensitive measurements possible by:

- minimizing electronic noise
- enhancing stability / minimizing electronic drift and back-action
- lowering sample/electron temperatures

Our instruments make detecting smaller signals & more fragile quantum phenomena possible; hence providing a better lens into the quantum world

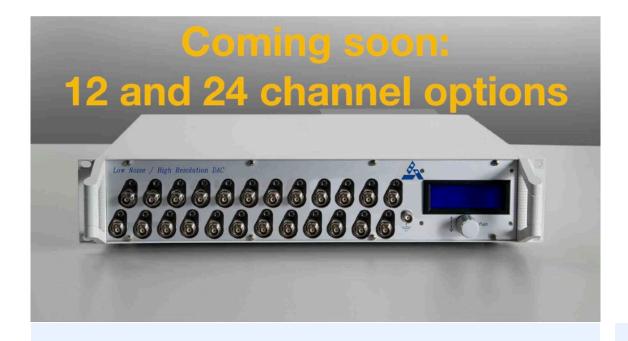
World-wide and Expanding Customer Base In the Quantum Market

Sold over 100 instruments in 2020 to low temperature research and government laboratories and companies world-wide

- Scaling up goal: 4-fold increase in customer base in the next 2-3 years
- Based in Europe heart of low temperature research and technology
- Most of our competitors: also small European SMEs
- A thorough market research is underway

Current Products

Low Noise | High Resolution DAC


Low Noise | Low Drift Differential Amplifier

Low Noise | High Stability I to V Converter

Microwave Filter | Thermalizer

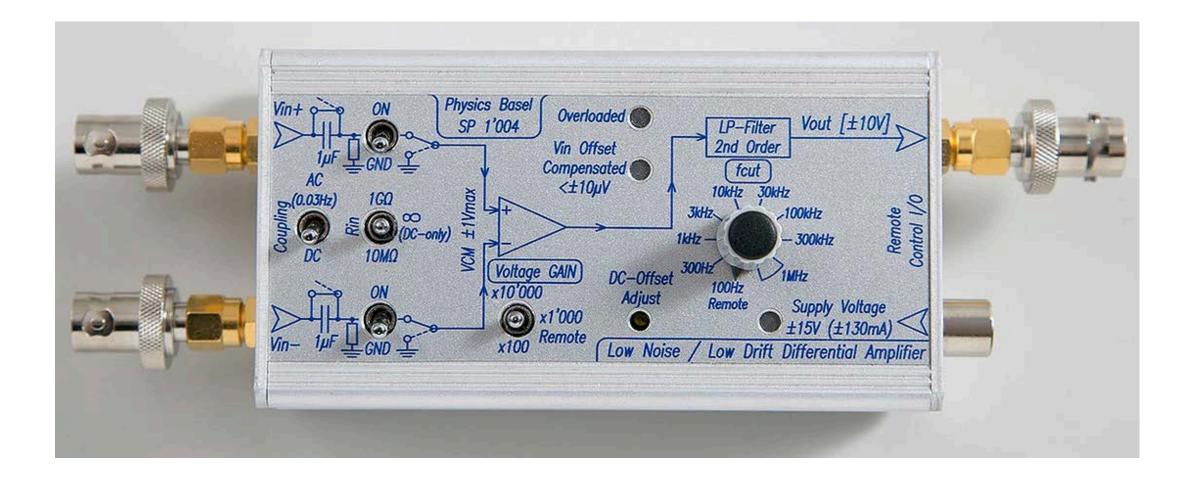
Upcoming Products

Low Noise I High Resolution DAC II

Microwave Filter Thermalizer Tower

BASPI's Compact Ultra-Low Noise Preamplifiers

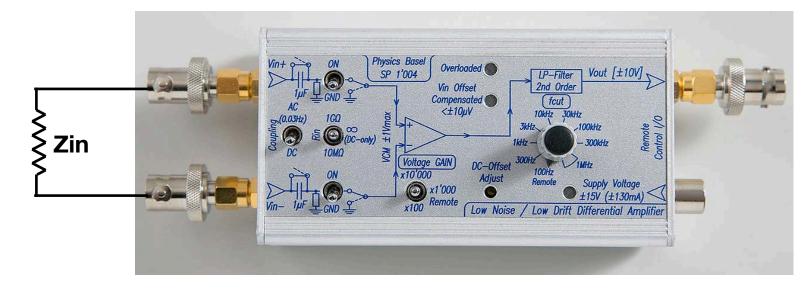
benefits


- ultra-low noise preampfification at the first access point
- no additional noise pick up when mounted directly on the breakout box
- minimized back-action on the experiment
- optimized noise performance for specific load
- solves ground loop issues
- possible to apply bias and measure current on the same lead (IV converter)

key features

- compact and low weight
- floating
- ultra-low input voltage and current noise
- several decades of gain
- integrated low-pass-filter
- actively stabilized back action
- input voltage (external) biasing up to 2V (IV converter)

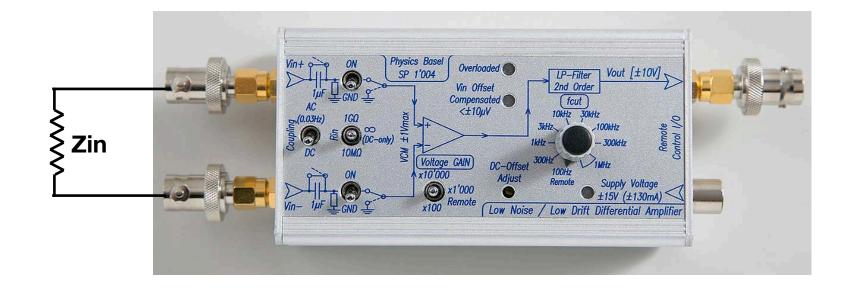
Low-Noise low-drift differential voltage amplifier


Voltage Preamplifier Noise Sources

Input offset voltage (V_offset)

Input voltage noise (Un)

Input offset or leakage current (I_offset)


Input current noise (In)

Input Offset Voltage (V_offset)

- Actively compensated and stabilized in BASPi's SP1004 (two decade improvement)
- Can be adjusted manually
- Applied to the sample; relevant for low resistive samples or sensitive bias measurements

Specs:

- stabilized voltage within $\pm 10 \; \mu V$
- stabilized drift < 0.3 μ V/K
- can be manually adjusted by $\pm 700 \; \mu V$

Test Report

Serial Number: SN10040000087

Date: 20/07/2020

•

1. General			
Positive Quiescent Supply Current @+15V [mA]:	88	LED ON (green) for Supply Voltage > [V]:	±13.5
Negative Quiescent Supply Current @-15V [mA]:	76	Overload LED (red) @ Vout [V]:	>+9.5 or <-9.5

•

2. Input Voltage Noise Density (Inputs to GND) Integrated Noise Voltage							
Measuring Frequency [Hz]:	1	10	100	1k	10k	100k	
GAIN=100, Input Noise Density [nV/sqrt(Hz)]:	4,65	1,34	1,06	1,05	0,95	0,97	
GAIN=1'000, Input Noise Density [nV/sqrt(Hz)]:	4,28	1,29	1,06	0,93	0,94	0,91	
GAIN=10'000, Input Noise Density [nV/sqrt(Hz)]:	4,34	1,44	0,94	0,94	0,95	0,87	
Integrated Input Noise Voltage 0.5 Hz - 1 kHz (GAIN=1'000):					31,43 nVrms		
Integrated Input Noise Voltage 0.5 Hz - 100 kHz (GAIN=1'000):					300,4 nVrms		

3. Input Voltage Temperature Drift (Inputs to G		
Input Voltage Temperature Drift @25°C [µV/K]:	0,345	

•

5. DC Input Current		
Measured @Input	Vin+	Vin-
Input Current @25°C [pA]:	5,33	5,42

6. Input Current Noise Density, @ Rin = "∞"				
Measured @Input	Vin+	Vin-		
Current Noise Density @10 Hz [fA/sqrt(Hz)]:	4,54	5,08		
Current Noise Density @1 kHz [fA/sqrt(Hz)]:	12,54	14,87		

8. DC Voltage GAIN Accuracy			
Voltage GAIN:	100	1'000	10'000
Mean Error (Offset Corrected) [%]:	1,35	0,07	-0,47

9. Bandwidth and Rise/Fall-Time @fcut = 1 MHz					
Voltage GAIN:	100	1'000	10'000		
Bandwidth (-3dB, 0.5 Vrms) [kHz]:	1155	1115	1.170		
Rise/Fall-Time (10-90%, 1 Vpp) [μs]:	0,296	0,298	0,297		

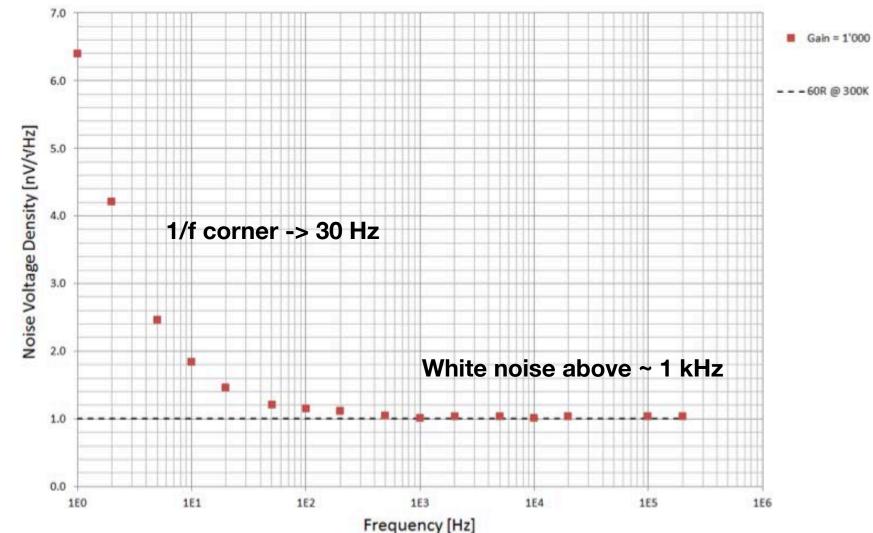
11. Common Mode Rejection-Ratio @GAIN=1'000						
Measuring Frequency [Hz]:	0,01	10	100	1k	10k	100k
CMRR @DC-Coupling [dB]:	87,1	136,3	148,5	125,7	104,4	87,5
CMRR @AC-Coupling (Rin = 1 GOhm) [dB]:	NA	113,3	113,6	112,5	102,8	87,4

4. [

7. I

. Inspector: DM

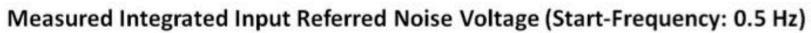
DC-Offset Adjust Range (with Trimmer)			
Input Offset Voltage Range [μV]:	+705,6 to -775,3		

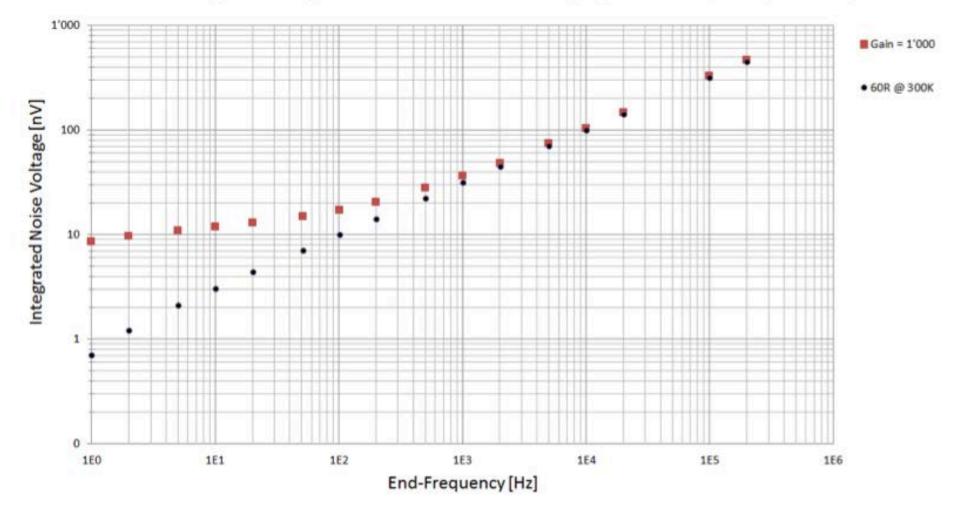

Input Diff. Voltage @Offset Comp. ON		
Square Input Volt. @0.5 Hz [mVpp]:	115	

10. Common Mode Voltage		
Max. POS [V]:	1,1	
Max. NEG [V]:	1,1	

Input Voltage Noise (Un)

- It is amplified by the gain and contributes to the measurement noise
- Applied to the sample, relevant for low resistive loads
- White noise density of 1 nV/ \sqrt{Hz} above 1 kHz

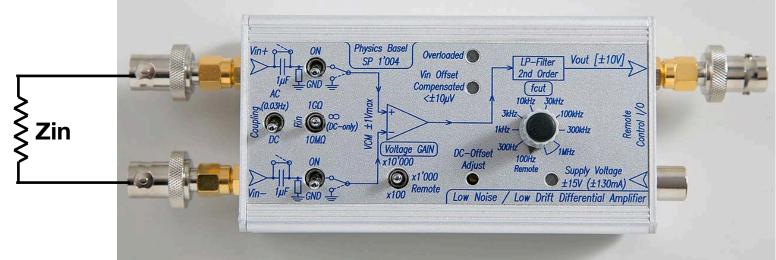




Measured Input Referred Noise Voltage Density

Input Voltage Noise (Un)

- It is amplified by the gain and contributes to the measurement noise
- Applied to the sample, relevant for low resistive loads
- White noise density of 1 nV/ \sqrt{Hz} above 1 kHz



Input Offset or Leakage current (I_offset)

- Originates from the gate leakage of the input J-FET and depends on temperature
- Applied to the sample; creates large voltages across the high resistive loads
- Typical amplitude 15pA; doubles with every 10K temperature increase

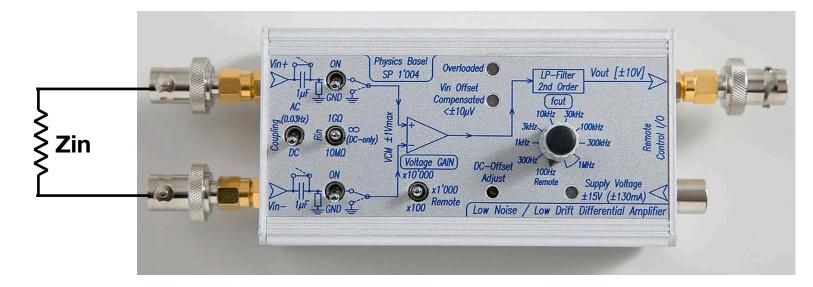
Input Current Noise (In)

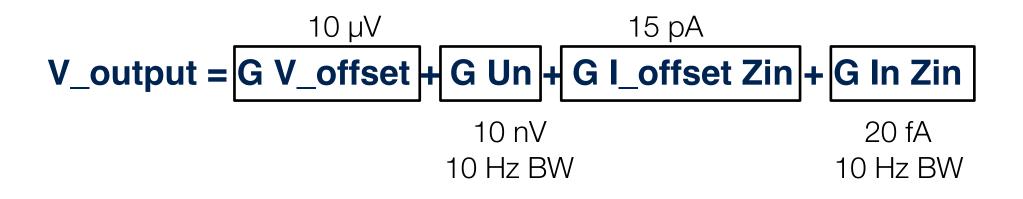
Has two components: shot noise of the leakage current and thermal noise of input resistor

$$I_{shot} = \sqrt{2e_0 I_{leak}} \qquad I_{noise} = \sqrt{\frac{4kT}{R}}$$

- Can be reduced by selecting low leakage current and by using DC coupling/high input resistor
- Is applied to the sample; relevant for high-resistive samples

Selected Input Resistance [Ohm]	Measured Input Current Noise @ 10 Hz / @30°C [fA/√(Hz)]	Measured Input Current Noise @ 1 kHz / @30°C [fA/√(Hz)]	Theoretical Input Current Noise @ 30°C [fA/√(Hz)]
∞ (DC-only)	6	12	3.1
1 Giga	7	14	5.1
10 Mega	43	48	41.1


Voltage Preamplifier Noise Sources


Input offset voltage (V_offset)

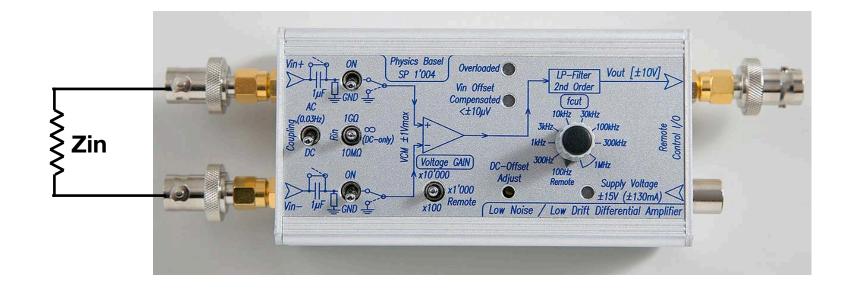
Input voltage noise (Vn)

Input offset or leakage current (I_offset)

Input current noise (In)

for Z0 < 1M Ω Voltage noise and drift dominates for Z0 > 1M Ω Current noise and drift dominates

Example:


Measuring the thermal noise of a 1 $k\Omega$ resistor at room temperature

- Johnson noise = $4 \text{ nV}/\sqrt{\text{Hz}}$
- Preamp vol. noise = $1 \text{ nV}/\sqrt{\text{Hz}} > 1 \text{ kHz}$
- Select the preamp with lowest voltage noise

Measuring μV signals across a sample with 1 G Ω resistance

- Signal = $\mu V \cdot G$
- Current noise = 20 fA \cdot 1E9 \cdot G = 20 μ V \cdot G
- Current offset = 15 pA .1E9 . G = 15 mV . G
- Select preamp with lowest current noise, offset and drift

Test Report

Serial Number: SN10040000087

Date: 20/07/2020

•

1. General			
Positive Quiescent Supply Current @+15V [mA]:	88	LED ON (green) for Supply Voltage > [V]:	±13.5
Negative Quiescent Supply Current @-15V [mA]:	76	Overload LED (red) @ Vout [V]:	>+9.5 or <-9.5

•

2. Input Voltage Noise Density (Inputs to GND) Integrated Noise Voltage							
Measuring Frequency [Hz]:	1	10	100	1k	10k	100k	
GAIN=100, Input Noise Density [nV/sqrt(Hz)]:	4,65	1,34	1,06	1,05	0,95	0,97	
GAIN=1'000, Input Noise Density [nV/sqrt(Hz)]:	4,28	1,29	1,06	0,93	0,94	0,91	
GAIN=10'000, Input Noise Density [nV/sqrt(Hz)]:	4,34	1,44	0,94	0,94	0,95	0,87	
Integrated Input Noise Voltage 0.5 Hz - 1 kHz (GAIN=1'000):					31,43 nVrms		
Integrated Input Noise Voltage 0.5 Hz - 100 kHz (GAIN=1'000):					300,4 nVrms		

3. Input Voltage Temperature Drift (Inputs t	o GND)
Input Voltage Temperature Drift @25°C [µV/K]:	0,345

•

5. DC Input Current		
Measured @Input	Vin+	Vin-
Input Current @25°C [pA]:	5,33	5,42

 Input Current Noise Density, @ Rin = "∞" 		
Measured @Input	Vin+	Vin-
Current Noise Density @10 Hz [fA/sqrt(Hz)]:	4,54	5,08
Current Noise Density @1 kHz [fA/sqrt(Hz)]:	12,54	14,87

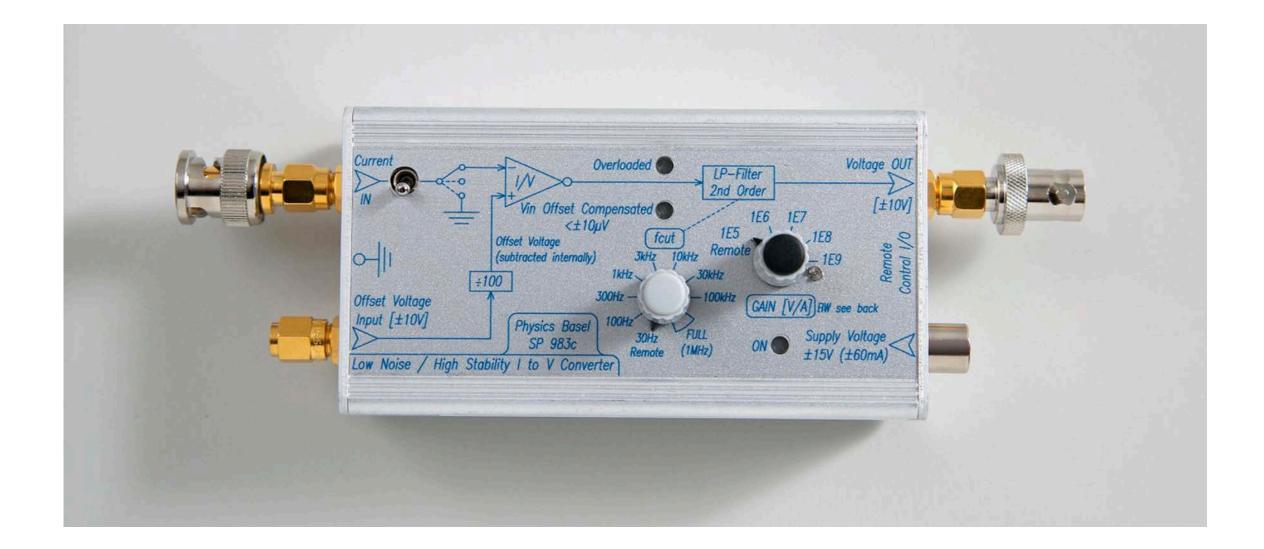
8. DC Voltage GAIN Accuracy			
Voltage GAIN:	100	1'000	10'000
Mean Error (Offset Corrected) [%]:	1,35	0,07	-0,47

9. Bandwidth and Rise/Fall-Time @fcut = 1 MHz					
Voltage GAIN:	100	1'000	10'000		
Bandwidth (-3dB, 0.5 Vrms) [kHz]:	1155	1115	1.170		
Rise/Fall-Time (10-90%, 1 Vpp) [μs]:	0,296	0,298	0,297		

11. Common Mode Rejection-Ratio @GAIN=1'000						
Measuring Frequency [Hz]:	0,01	10	100	1k	10k	100k
CMRR @DC-Coupling [dB]:	87,1	136,3	148,5	125,7	104,4	87,5
CMRR @AC-Coupling (Rin = 1 GOhm) [dB]:	NA	113,3	113,6	112,5	102,8	87,4

4. [

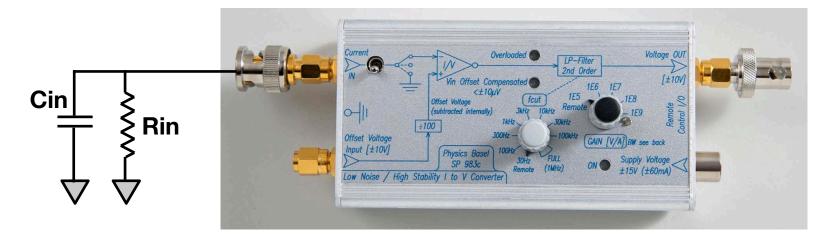
7. I


. Inspector: DM

DC-Offset Adjust Range (with Trimmer)		
Input Offset Voltage Range [μV]:	+705,6 to -775,3	

Input Diff. Voltage @Offset Comp. ON		
Square Input Volt. @0.5 Hz [mVpp]:	115	

10. Common Mode Voltage		
Max. POS [V]:	1,1	
Max. NEG [V]:	1,1	


Low-Noise high-stability I to V converter

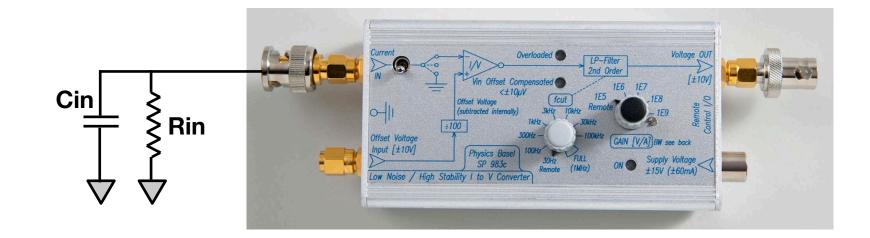
Current Preamplifier Noise Sources

Input offset voltage (V_offset) Input voltage noise (Un) Input offset current (I_offset) Input current noise (In)

 $1/Zin = 1/Rin + j 2\pi f Cin$

V_output = Noise-Gain V_offset + Noise-Gain Un + G I_offset + G In

Gain (current gain) = Rf Noise Gain (voltage gain) = $1+Rf/Zin = 1 + Rf/Rin + j 2\pi f Rf Cin$

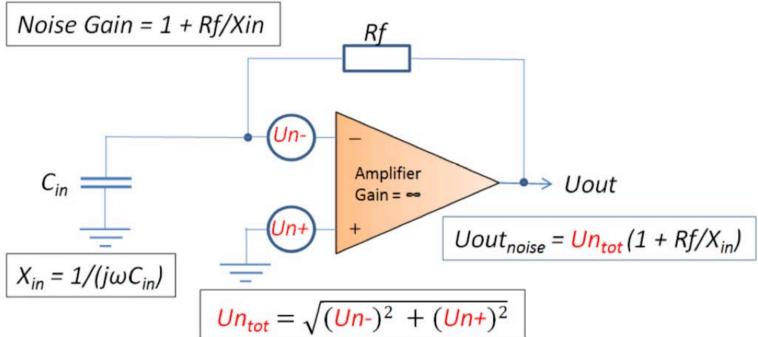

Input Offset Voltage (V_offset)

- Actively compensated and stabilized in BASPI's SP983c preamps
- Can be zeroed or shifted using an external bias voltage source
- Is applied to the sample
- Can be used to bias the sample together with an external supply voltage

Specs:

- device-specific fixed offset within ±30 μV
- stabilized drift < 0.15 μ V/K @ 25°C
- stabilized voltage within $\pm 10 \ \mu V$ with respect to fixed or user defined offset
- Internally subtracted (external bias)

Input Voltage Noise (Vn)


- It is applied to the sample; causes power dissipation, relevant for low-temperature experiments
 - Each J-FET has it's own voltage noise source (Un±) which gets amplified by the noise gain:

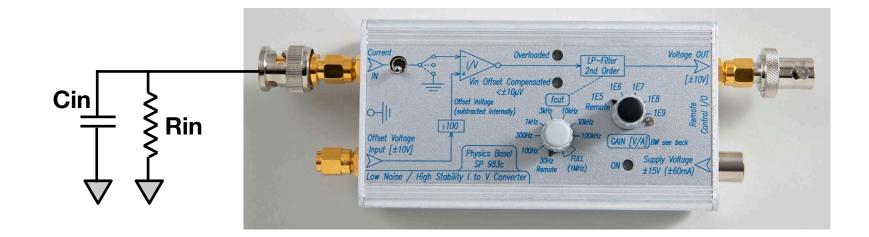
Noise Gain = $1+Rf/Zin = 1 + Rf/Rin + j 2\pi f Rf.Cin$

- Relevant for small load impedance
- Increases linearly with frequency for capacitive loads (also noise peaking)

@ f = 10 Hz	@ f = 30 Hz	@ f = 100 Hz	@ f = 1 kHz
2 nV/sqrt(Hz)	1.6 nV/sqrt(Hz)	1.5 nV/sqrt(Hz)	1.2 nV/sqrt(Hz)

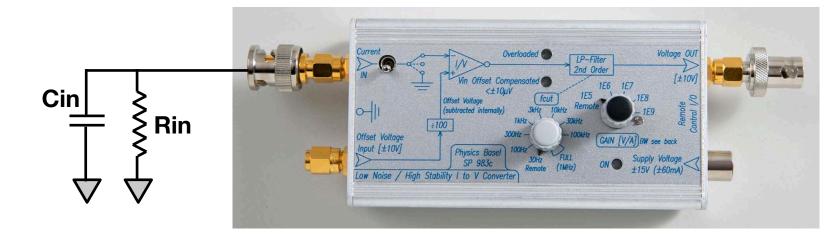
$$(011-)^{-} + (011+)^{-}$$

Input Current Noise


- Originates from the thermal noise of the feedback (Gain) resistor with a $1/\sqrt{Rf}$ dependence
- The signal to noise ratio therefore increases with √Rf; hence use the highest gain possible

GAIN [V/A]	Current Noise @ 10 Hz	Current Noise @ 1 kHz	Theoretical Limit	
	[fA/sqrt(Hz)]	[fA/sqrt(Hz)]	[fA/sqrt(Hz)]	
10 ⁹	6	9	4.1	
10 ⁸	14	16	13	
107	42	43	41	
106	135	140	130	
10 ⁵	576	582	410	

Input Offset Current


- Originates from the J-FETs
- Does not go through the sample
- Typical value 35 pA

Current Preamplifier Noise Sources

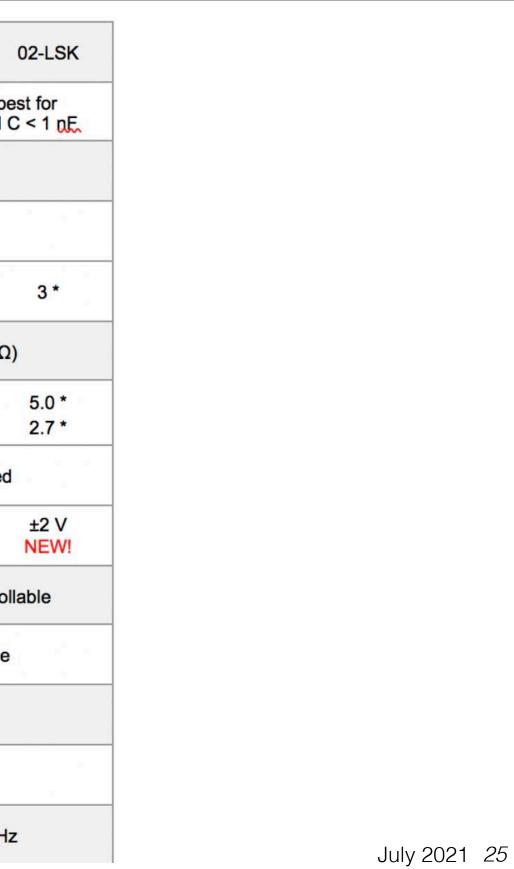
Input offset voltage (V_offset) Input voltage noise (Un) Input offset current (I_offset) Input current noise (In)

V_output = Noise-Gain V_offset + Noise-Gain Un + G I_offset + G In 2 nV/√Hz @10 Hz

Current noise dominates for Noise-Gain < 1000

Gain (current gain) = Rf Noise Gain (voltage gain) = $1+Rf/Zin = 1 + Rf/Rin + j 2\pi f Rf Cin$

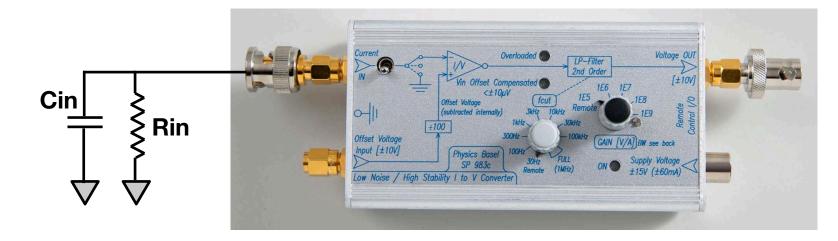
Voltage noise dominates for Rin < 1 M Ω or Cin f > 1 nF kHz



6 fA/_/Hz @10 Hz and G=10^9 Leads to 6 μ V/ \sqrt{Hz} output

Data Sheet

Model SP	983c	-IF	01-IF	-LSK		
Input J-FET		IF3602, R < 1 MΩ c	LSK389A, bes R > 1 MΩ and C			
Stable,	low-noise	and overload pr	otected input cu	rrent		
Current noise @10 Hz & 109 V/A	(fA/√Hz)	6		5		
leakage current magnitude (pA)		40	50 *	3		
Stable, low-drift and low	w-noise inp	ut voltage (low	voltage noise re	evant for R < 1	MΩ)	
Input voltage noise @ 10 Hz (n)/// Input voltage noise @ 1 kHz (n)///		2.0 1.2	2.6 * 2.0 *	4.5 1.9		
Input voltage drift		0.15 µV/K @25°C - feedback stabilized				
Input bias voltage (internally subtracted at output)		±100 mV	±1 V NEW!	±100 mV		
Gain		five decades 10 ⁵ to 10 ⁹ V/A - remote controll				
Integrated low-pass filter		30 Hz to 100 kHz - remote controllable				
Bandwidth		24 kHz @ 10 ⁸ V/A				
DC input impedance		33 Ω – 46 Ω				
GBWP		600 MHz 68 MHz			MHz	


Example:

Measuring pA signal from a highly resistive sample; using Christian's filters on the lines

- \sim Cin = 5 nF, Rin >> Rf
 - f=10 Hz -> noise-gain = ~300
 - Use an LSK with low current noise
 - $f=1kHz \rightarrow noise-gain = ~30,000$
 - Use IF with low voltage noise

Symmetric Biasing

How do you select your preamplifiers?

= 1 + Rf/Rin + j 2π f Rf Cin

Noise Gain (voltage gain) = 1+Rf/Zin

Test Report

Serial Number: SN0983c0000075 with IF602

Date: 13/03/2020

1. General					
Positive Supply Current @+15V [mA]:	41	41 LED ON (green) for Supply Voltage > [±V]:		13,5	
Negative Supply Current @-15V [mA]:	41	Overload LED (red) @ Vout [V]:		9,5	
2. Current Input					
"Fixed" Input Offset Voltage @25°C [μV]:	8,5	Drift of Input Offset Voltage @25°C [µV/K]:		0,11	
DC Input Resitance [Ohm]:	34,7	Gain-Bandwith Product (GBWP) [MHz]:		583,6	
Input Offset Current @25°C [pA]:	49,1	Ext. Offset Voltage Input Step (Δ Voff<10 μ V) [±V]:		1,3	
3. Input Voltage Noise Density					Int. Noise Volt [nV _{RMS}]
Measuring Frequency [Hz]:	10	30	100	1.000	0.5Hz1kHz
Input Voltage Noise [nV/sqrt(Hz)]:	1,94	1,59	1,86	1,35	124,2
					·
3. Input Current Noise Density					
GAIN [V/A]:	10E5	10E6	10E7	10E8	10E9
Current Noise @10 Hz [fA/sqrt(Hz)]:	603,6	138,8	45,6	14,6	6,1
Current Noise @1 kHz [fA/sqrt(Hz)]:	593,1	141,2	43,3	15,2	8,4
4. GAIN Accuracy					
GAIN [V/A]:	10E5	10E6	10E7	10E8	10E9
Accuracy of Gain (Offset Corrected) [%]:	-0,21	0,03	-0,30	-0,25	0,01
5. Bandwidth and Rise/Fall-Time					
GAIN [V/A]:	10E5	10E6	10E7	10E8	10E9
Bandwidth (-3dB, 1 Vrms) [kHz]:	550	325	101	24,9	1,56
Rise/Fall-Time (10%, 90%) [µs]:	0,623	1,08	3,28	12,9	254,7

Inspector: D.M.

Competitive Analysis for LNHS I-to-V Converter					
Product name	IVC	PCG-380F	DLPCA-200	Ithaco 1211	SR 570
Manufacturer	BASPI (CH)	Pluto Inst. (KR)	Femto (DE)	DL Instr. (US)	SRS (US)
Variable gain	Up to 10E9 V/A				
Max Bandwidth at 1E9 gain	1.7 kHz	5 kHz	1.1 kHz	4 kHz	15 Hz
Voltage noise density (nV/sqrt Hz) at 1 kHz	1.2	2	4	10	Not specified
Current noise density (fA/sqrt Hz) at 1E9 gain in	5 @10 Hz	4 @10 Hz	4.3 @100 Hz	5 up to 4kHz rms	6 @10 Hz
Input voltage active stabilization	Yes	No	No	No	No
Input voltage drift at room temperature(/degC)	0.15 µV	1.8 µV	Not specified	Not specified	Not specified
Possibility to apply bias voltage	Up to 2V	None	Up to 10V	Up to 5V	Up to 5V
Amplifier ground floating	Yes	No	No	No	Yes
Form factor and weight	Compact	Semi-compact	Compact	Bulky	Bulky
	165 gr	350 gr	320 gr	3.7Kg	6.7 Kg