# Group meeting

Henok Weldeyesus 07.08.2020

## Direct observation of anyonic braiding statistics at the $\nu = 1/3$ fractional quantum Hall state

J. Nakamura,<sup>1,2</sup> S. Liang,<sup>1,2</sup> G. C. Gardner,<sup>2,3</sup> and M. J. Manfra<sup>1,2,4,3,5,\*</sup>

<sup>1</sup>Department of Physics and Astronomy, Purdue University <sup>2</sup>Birck Nanotechnology Center, Purdue University <sup>3</sup>Microsoft Quantum Purdue, Purdue University <sup>4</sup>School of Electrical and Computer Engineering, Purdue University <sup>5</sup>School of Materials Engineering, Purdue University (Dated: June 26, 2020)

Utilizing an electronic Fabry-Perot interferometer in which Coulomb charging effects are suppressed, we report experimental observation of anyonic braiding statistics for the  $\nu = 1/3$  fractional quantum Hall state. Strong Aharonov-Bohm interference of the  $\nu = 1/3$  edge mode is punctuated by discrete phase slips consistent with an anyonic phase of  $\theta_{anyon} = \frac{2\pi}{3}$ . Our results are consistent with a recent theory of a Fabry-Perot interferometer operated in a regime in which device charging energy is small compared to the energy of formation of charged quasiparticles [17]. Close correspondence between device operation and theoretical predictions substantiates our claim of observation of anyonic braiding.

## Overview

- Introduction
- Anyonic braiding statistics
- Fabry-Pero Interferometry
  - Problems
  - Device Design
  - Signatures of Anyon statistics
- Summary

#### Introduction

- Electrons in2D + perpendicular B-field
  - Quantum-Hall effect
- Filling factor  $\nu = \frac{N_e}{N_{\phi}}$

 $N_e$  number of electron  $N_\phi$  number of fluxquanta

- Integer states:
  - Described by non-interacting electrons
- Fractional states:
  - Strongly interacting electrons
    - Description in terms of quasiparticles with exotic properties (fractional charge, anionic statistics, etc.)



## Anyon braid statistics

- Generally:  $\psi(r_1, r_2) = e^{i\theta}\psi(r_2, r_1)$
- Two options in 3D:
  - Bosons ( $\theta = 2\pi$ ) Or Fermions ( $\theta = \pi$ )
- In 2D:
  - Anyons:  $0 < \theta < \pi$

#### Example:

**Braiding Laughlin states in FQHE** 

$$v = \frac{1}{2p+1}$$
 for p = 1,2,3...  
For  $v = \frac{1}{3}$  the phase is  $\theta = \frac{2\pi}{3}$ 



## Fabry-Perot Interferometer

- Qpc's at ~ 90% transmission
- Interference of backscattered channels

• 
$$T \sim \cos\left(2\pi \frac{AB}{\phi_0}\right)$$
 ;  $\phi_0 = \frac{h}{e}$ 



## Fabry-Perot Interferometer

- Qpc's at ~ 90% transmission
- Interference of backscattered channels

• 
$$T \sim \cos\left(2\pi \frac{AB}{\phi_0}\right)$$
 ;  $\phi_0 = \frac{h}{e}$ 

 $\Delta V_{\text{gate}} = 5.8 \text{ mV}$ 



b)

Nakamura, J. et al. Nat. Phys (2019)

 $\Delta B = 5.7 \text{ mT}$ 

## The charging problem



Aharonov-Bohm Dominated



Anyon statistics only observable in AB-regime!



Halperin, B. et al. Phys. Rev. B 83, 155440 (2011). McClure, D. T. et al. Phys. Rev. Lett. 108, 256804 (2012). Nakamura, J. et al. Nat. Phys (2019)

# The charging problem



Growth profile





wells

Nakamura, J. et al. Nat. Phys (2019)





## Further evidence

- FQH states have Quasiparticle gap for exitations
- Rosenow & Stern Flux Superperiods and Periodicity Transitions in Quantum Hall Interferometers. PRL (2020)
  - FP interferometer with strong screening
  - If Quasiparticle gap is bigger than Charging energy
    - -> two interference regimes
  - Period trippling expected outside the gap









- Thermal smearing of quasiparticle number
- Temperature scale ~4mK ( $T_e \approx$ 22mK)





• 
$$T \sim \cos\left(2\pi \frac{e^*}{e} \frac{AB}{\phi_0} + N_{qp}\theta_{anyon}\right)$$

• At high T  $N_{qp}$  is continues

$$T \sim \cos\left(2\pi \frac{1}{3} \frac{AB}{\phi_0} + \frac{2\pi}{3} \langle N_{qp} \rangle\right)$$

• One particle per  $\phi_0$ 

$$T \sim \cos\left(2\pi \frac{1}{3} \frac{AB}{\phi_0} - \frac{2\pi}{3} \frac{AB}{\phi_0}\right)$$
  
no B-field dependence!



Why phase jumps in center region?Disorder





## Temperature dependence

- Visibility of oscillations reduces slower in plateau center region
- Caused by thermal fluctuation of quasiparticle number



## Summary

- Discrete phase jumps consistent with Anyon braiding
- B independent oscillations away from plateau center and thermal dephasing agree well with theory
- Strong evidence for first observation of Anyon braiding

Outlook

- Investigate other fractional states
  - Possibly non-Abelian(e.g. 5/2)