Non-Majorana states yield nearly quantized conductance in superconductor-semiconductor nanowire devices

P. Yu,¹ J. Chen,¹ M. Gomanko,¹ G. Badawy,² E.P.A.M. Bakkers,² K. Zuo,³ V. Mourik,⁴ and S.M. Frolov¹

¹University of Pittsburgh, Pittsburgh, PA 15260, USA ²Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands ³Center for Emergent Matter Science (CEMS), RIKEN, Wako 351-0198, Saitama, Japan ⁴Centre for Quantum Computation and Communication Technologies, School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, New South Wales 2052, Australia (Dated: April 21, 2020)

Proposal for Realization of Majorana states in 1D systems

One-dimensional Spinless p-wave superconductor

- 1D nanowire with spin-orbit interaction
- Proximity with an s-wave superconductor
- Applying magnetic field along the nanowire (perpendicular to B_{so})

10.1126/science.1222360

For $E_Z > E_c$ \longrightarrow topological phase transition \longrightarrow 2 unpaired Majorana states at 2 ends of Nanowire

Tunneling into a Majorana bound state sould be seen as a quantized ZBCP at exactly $2e^2/h$

Device and characterization of soft superconductivity

Charactrization of tunnel barriers

* By applying and increasing a magnetic field along the NW (perpendicular to B_{so}), ZBCP should reach to $\frac{2e^2}{h}$

Changing tunnel barrier transparency should not split the ZBCP, nor make it disappear [1]

 Majorana conductance exceed 2e^2/h only if the barrier has multiple transmitting channels
[2].

0

V_{bias}(mV)

4

-4

* Majorana states are predicted to appear only when B is perpendicular to the effective B_{so}

6

U N I B A S E L

Delocalized states at high electron density regime (S-gate>0)

Even the three-terminal geometry is not immune to fine tuning

Right side $G_{R}(2e^{2}/h)$ Left side $G_1(2e^2/h)$ b а S-Gate = 0.6 V, T_L = -0.15 V and T_R = 0.09 V 0.8 0.4 1⁻¹ V_{bias}(mV) V_{bias}(mV) 7 0.2 0.2 Ō 0.7 1.4 0.7 1.4 0 B(T) B(T) U N I B A S E L

Summary and conclusion

- By using a three terminal device they could not find correlated transport resonances simultaneously at both ends of the nanowire
- They find states delocalized between left and right ends only around zero field and at **at high electron density regime.**
- further efforts are required to understand and optimize nanowire devices, while any claim of Majorana bound state observation should be verified

Thanks for your attention

Kitaev's toy model

