

npj Quantum Information

www.nature.com/npjqi

ARTICLE OPEN Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates

A. J. Sigillito 🝺¹, M. J. Gullans¹, L. F. Edge², M. Borselli² and J. R. Petta 🍺^{1*}

2019

Jason Petta

Taras Patlatiuk 20.03. 2020

Motivation

- electron spin qubits in Si
- high-fidelity single- and two-qubit (exchange) gates
 - error correction
 - random access memory
 - multiqubit algorithms
- quantum SWAP gate → phase coherent SWAP
 - move spin eigenstates in 100 ns, $\overline{F}_{SWAP}^{(p)} = 98\%$
 - transfer product states in 300 ns, $\bar{F}_{SWAP}^{(p)} = 84\%$
- coupling of non-adjacent qubits

Device architecture

Phys. Rev. Appl. 11, 061006 (2019)

- isotopically enriched ²⁸Si/SiGe
- micromagnet
- electron dipole spin resonance (single spin control)
- qubits Q_3 and Q_4 (under plunger gates P_3 and P_4)
- (N₃, N₄)=(1, 1)
- charge sensing with I_{S2} (readout 3 ms)
- measure/initialize Q₄ (via spin-selective tunneling to reservoir under D₃)
- loading fidelity 95% limited by 110 mK

Two-qubit interactions

projection-SWAP

Measurement Cycle

- A: individual manipulation
- B: spin-selective tunneling leaves Q_4 in the state $|\downarrow\rangle$
- C: modulate the exchange interaction, map Q_3 to Q_4
- D: read out " Q_3 " leaves Q_3 and Q_4 in state $|\downarrow\rangle$

projection-SWAP

 $Q_3 \qquad Q_4$

SWAP gate calibration

- initialize $|\phi_3,\phi_4\rangle = |\downarrow\downarrow\rangle$
- flip Q₄ using X gate
- f_{SWAP} burst on B_4 for 600 ns

- no oscillations at small $V_{B4}^{(ac)}$
- SWAP at $V_{B4}^{(ac)} = 10 \text{ mV}$
- pattern is symmetric about $f_{SWAP} = 140 \text{ MHz}$

7

Minimize SWAP time

- fix $f_{SWAP} = 140 \text{ MHz}$
- change burst time and ac amplitude

- bright fringe even number of SWAPs
- Minimum $t_{SWAP} = 23 \text{ ns}$ (limited by control electronics)
 - $T_2^* \approx 10~\mu s$ for both dots (T $_1$ = 134 / 52 ms)

Simultaneous control, initialization, and readout

- Rabi oscillations (spacing largest on resonance)
- qubit difference frequency 140 MHz
- Initialize, control, and readout DQD with Q₄

- initialize $|\phi_3,\phi_4\rangle = |\downarrow\downarrow\rangle$
- RF burst
- measure Q₄
- projection-SWAP
- measure "Q₃" (measure Q₄ infer Q₃)

projection-SWAP fidelity

- experiment insensitive to state preparation and measurement (SPAM) errors
- initial states: $|\phi_3,\phi_4\rangle_{in} = |\downarrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\uparrow\uparrow\rangle$
- execute SWAP gate N times
- $|\downarrow\uparrow\rangle$ and $|\uparrow\downarrow\rangle$ flip-flop for each SWAP
- decay envelope is given by fidelity

•
$$F_{\downarrow\uparrow}^{(p)} = F_{\uparrow\downarrow}^{(p)} = 96.5\%,$$

 $F_{\downarrow\downarrow}^{(p)} = 99.6\%, F_{\uparrow\uparrow}^{(p)} = 99.2\%$

• $\bar{F}_{SWAP}^{(p)} = 98\%$

10

coherent-SWAP fidelity

- state tomography before and after SWAP of the superposition state Q₃ and spin down state Q₄.
- additional calibration
- $(\alpha_1|\uparrow\rangle + \beta_1|\downarrow\rangle) \otimes (\alpha_2|\uparrow\rangle + \beta_2|\downarrow\rangle) \rightarrow (\alpha_2|\uparrow\rangle + \beta_2|\downarrow\rangle) \otimes (\alpha_1|\uparrow\rangle + \beta_1|\downarrow\rangle)$

•
$$\bar{F}_{SWAP}^{(c)} = 84\%$$

Gate calibration

 $\Delta_i = B_i - 2\pi f_i \text{ - magnetic field detuning}$ $\Delta_{34} = \Delta_3 - \Delta_4 \text{ - shifted magnetic field gradient}$ $\phi \text{ is the phase of this ac}$

Calibration of the gate requires a precise measurement of $J_{34}^{dc/ac}$ and $\Theta_{3/4}$

12

Gate calibration

Conclusion and outlook

- coherent spin transport in an array of quantum dots
- transfer arbitrary two-qubit states between spins
- no moving charges
- shuttle a spin projection across nine-dot array with 85% fidelity
- compatible with singlet-triplet and cavity dispersive readouts

Experimental setup

