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Motivation

InSb

Good:
* Large g-factor (~40) = small B-field needed to drive hybrid device into topological regime

» Small effective mass (0.014 m,) = leads to large sub-band spacing[1]

Difficult:
e Selective area growth (SAG) difficult by standard MBE technigues (selectivity conditions don’t overlap with preferred

nucleation conditions)
e Can be overcome by hydrogen plasma during growth, but at cost of reduced shape uniformity (not good)

Solution:
e Metal-sown (MS) SAG allows decoupling of nucleation and selective growth conditions

[1]I. van Weperen PRB 91, (20) 1 (2015)




MS SAG Process

1. Selective definition of channels

2. Selective metal sowing (indium only,
high temp, get seeds)

3. InSb nucleation layer (antimony only,
get InSb layer)

4. Homoepitaxy of InSb on nucleation layer, growth continues with InSb in conditions favoring high crystal quality and desired
dimensions

This has been done on InP and GaAs substrates. The paper focuses on InP (111)B, done at or below 500 C (CMOS compatible)




Very Cool




Mobility Measurements
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Measurements done at 20 mK QPC Measu rements Scale bar 1 um

Ballistic over 440 nm (+ other devices up to 700 nm) a
B applied parallel to substrate, perpendicular to wire
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Aharonov-Bohm

Conductance probed while applying out of plane B-field through area of loop A ®=BA

Probing phase coherence of wire through periodicity of conductance fluctuations
resulting from quantum interference between electron trajectories around loop Go = h/e

Periodicity depends on loop area and magnetic flux quantum ¢, as AB| = %
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Figure $11 Examples of the raw Hall effect data taken on Hall bar device C used for n(l;), g (V) calculation
and interface charge simulations. An AC-excitation current of I,;,c = 10nA was applied and the measured
voltages V,,, V,, plotted in the two panels for the B and V values sampled. The slope obtained by a linear
fitting of V., (V) /Iias @gainst B yields the carrier density and the averaged V (V) /lpias over B at each Vy is
used to calculate the conductivity.
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