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Nuclear spins in silicon

Kane B. (1998) doi.org/10.1038/30156

• ~5% of natural Si atoms are 29Si  with spin ½
• Approximation for finFET QDs:

• Dot of size ~5*5*10 nm3 contains ~584 29Si nuclei

• Hyperfine interaction observed:
• i.e. lifting-mechanism of spin blockade

• Early proposal for nuclear spin based quantum computer



The device

Huang W. et al.  (2019) doi.org/10.1038/s41586-019-1197-0
Seedhouse A. et al. (2020) arxiv.org/pdf/2004.07078.pdf

• “Known“ from other papers/journal clubs
• Accumulation of double dot by G1/G2
• Confinement by CB/G3/G4
• Loading through reservoir RG
• Charge sensing with SET, ST/SLB/SRB
• ESR antenna
• 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 = 1.42 ± 0.04 𝑇𝑇

• Chip substrate: 
• isotopically purified Si (800 ppm 29Si)
• Expect ~2 29Si nuclei in an 8 nm dot



Initial observation
• Rabi frequency switches over time 

• Pattern of four different frequencies
• hour-timescale

• Histogram reveals four peaks
• Explanation: 2 nuclear spins overlap

with electron wavefunction
• Different couplings from different 

overlap

~450 kHz

~120 kHz



Hyperfine coupling to individual nuclear spin
• What does this proposal imply?
• Only consider strongly coupled nuclear spin: 4-level system

𝐻𝐻 = −𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾𝑒𝑒𝑆𝑆𝑧𝑧 + 𝛾𝛾𝑆𝑆𝑆𝑆𝐼𝐼𝑧𝑧 + 𝐴𝐴(𝑆𝑆 � 𝐼𝐼)

• Overlap is zero if the electron (↑) is not on the
same dot as the nucleus (⇑):

• Electron rabi frequency 𝑓𝑓𝑒𝑒0 = 39 𝐺𝐺𝐻𝐻𝐺𝐺
• Nuclear spin rabi frequency 𝑓𝑓𝑛𝑛0

• Hyperfine if e- is on the same dot as nucleus:
• Eigenstates are displaced by ± 𝐴𝐴
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• Sign depends on parallel/antiparallel spins

• Four transitions: 𝑓𝑓𝑒𝑒⇑, 𝑓𝑓𝑒𝑒⇓, 𝑓𝑓𝑛𝑛↑, 𝑓𝑓𝑛𝑛↓



Nuclear spin readout scheme
• Measure electron spin

rabi frequency
• Gives nuclear spin state

• Pulse in (0,1) charge state (𝐴𝐴 = 0)
• Apply pulse at 𝑓𝑓𝑛𝑛0

• Pulse in (1,0) state
• 𝜋𝜋-Pulses at 𝑓𝑓𝑒𝑒⇑and 𝑓𝑓𝑒𝑒⇓

• Electron spin readout: Elzermann + SET
• Only one of the two pulses will drive

electron spin



29Si nuclear spin qubit
• Rabi-Chevron of the nuclear spin
• Ramsey and Hahn-Echo measurements
• Quantum non-demolition readout

𝑇𝑇2∗ = 6.5 ± 0.3 𝑚𝑚𝑚𝑚 𝑇𝑇2𝐻𝐻𝐻𝐻𝐻𝑛𝑛 = 16 ± 2 𝑚𝑚𝑚𝑚

𝑓𝑓𝑛𝑛0 = 11.9078 𝑀𝑀𝐻𝐻𝐺𝐺 Comparison for electron in same device: 𝑇𝑇2
∗,𝑒𝑒 ≈ 15 𝜇𝜇𝑚𝑚



29Si nuclear spin qubit
• Alternative measurement:

• Pulses while electron in same dot as nucleus
• Electron spin set to up/down

• Resonances at 𝑓𝑓𝑛𝑛0 ± 225 𝑘𝑘𝐻𝐻𝐺𝐺

𝑇𝑇2
∗,𝑙𝑙𝑙𝑙𝐻𝐻𝑙𝑙𝑒𝑒𝑙𝑙 = 2.9 ± 0.7 𝑚𝑚𝑚𝑚 𝑇𝑇2

𝐻𝐻𝐻𝐻𝐻𝑛𝑛,𝑙𝑙𝑙𝑙𝐻𝐻𝑙𝑙𝑒𝑒𝑙𝑙 = 23 ± 4 𝑚𝑚𝑚𝑚



Qubit characterisation
• From intervals between switches: 

𝑇𝑇1450𝑘𝑘𝐻𝐻𝑧𝑧 = 1.0 ± 0.5 ℎ

𝑇𝑇1120𝑘𝑘𝐻𝐻𝑧𝑧 = 10.0 ± 0.6 𝑚𝑚𝑚𝑚𝑚𝑚
• Simulation of multiple readouts:

• ~8 𝑚𝑚𝑚𝑚
𝑚𝑚𝑒𝑒𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒

• Spin readout visibility: ~76%
• Optimal nuclear spin readout for 26 cycles
• Expect 99.99% nuclear spin readout fidelity

• Here: 20 cycles, fidelity of 99.8% reported



Electron & nuclear spin entanglement

• Initialize bell state:

| ⟩𝜙𝜙+ =
⟩|⇑↑ + ⟩|⇓↓
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• State tomography reveals:

• Preparation fidelity 73 ± 1.9 %
• 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 with projection
• Error sources: 𝑇𝑇2

∗,𝑒𝑒, uncontrolled 120 𝑘𝑘𝐻𝐻𝐺𝐺 nucleus etc.



Spin coherence during electron transfer
• 𝑡𝑡𝑐𝑐 ≈ 1 𝐺𝐺𝐻𝐻𝐺𝐺 ≫ 𝐴𝐴 ≫ 1

𝑇𝑇2
∗,𝑒𝑒

• Allows adiabatic movement of the electron across the dots
• Setting electron in (1,0) state changes nuclear phase evolution
• Phase accumulates for the time the electron spend in (1,0)
• Coherent nuclear spin oscillations in Ramsey-type experiment



Spin coherence during electron transfer
• Does the shuttling across dots affect the nuclear

spin coherence?
• Same experiment as before but with 2k shuttling

events during pulse into (1,0) state
• Observe a decay in coherence:
• Error probability per cycle ≈ 0.49 ± 0.29 %

• Same experiment with electron spin
• Different ramp time for transition

from (1,0) to (0,1)



Conclusion and Outlook
• Demonstrate coherent control of a single nuclear spin in silicon quantum

dots
• Implementation of nuclear spin qubit without need for single atom doping
• Slow nuclear qubit for information storage, fast electron qubit for

processing and information transmission
• Quantum error correction

• Use nuclear spin as electron spin sensor
• Conclude electron wavefunction < 8 𝑚𝑚𝑚𝑚 due to existence of 450 𝑘𝑘𝐻𝐻𝐺𝐺 nucleus

Challenges:
• Randomly distributed 29Si nuclei
• Long control time for nucleus and effects of long NMR pulses on electron

spin readout



Thank you for your attention!
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