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Is the moon there if nobody is looking ?

God does not throw dice'!
=) Yes he does! =) That depends!
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Device:

* GaAs double quantum dot

* Left QD charge sensor (same results with right sensor)
* Weak interdot-coupling

* Tuneable charge configuration down to (0,0)

* Standard charge stability diagram
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e Capacitive coupling — DQD configurations affects g,
* Record sensor conductance with fast DAQ — g, 8s4ey
* transitions also visible in g 4., if tunnel rates do not exceed BW
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Quenching interdot tunneling Real time tunneling "X ' '

* Reduce interdot tunnel coupling to zero e Time trace within noise diamond 100 =

e Zero detuning line disappears * Observe 2-level system 5

* Noisy diamond shape appears e Charge states are (0,1) and (1,0) s

* Diamond boarders parallel lead transitions |

* Within diamond (0,1) & (1,0) below chemical potential (0,1) % (1,0)

* Visible in standard deviation as well 70t

—> something is switching l 8

(0,1) — (1,0) switching
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Noise diamond vs T @

Increase Tmc and record sensor signal
Noise diamond disappears T = 200mK
Same observation in sdev
Does T suppress the switching?

— look at switching rates
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Switching rate vs T

Switching rate grows exponentially above 60mK
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Sensor (average) conductance

T=120 mK
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Rate saturates below 60mK (electron temperature in the device)

Switching is thermally activated
DQD does not have temperature — leads involved?

Consistent with diamond boarders parallel lead transition lines
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Proposed model (1,1)
* No interdot tunneling / \
* (0,1)-(1,0) exchange via leads via (0,0) or (1,1) (1,0) (0,1)
* (0,1)-(1,0) metastable, takes long to tunnel out (tail of FD distribution) \ /
* (0,0) & (1,1) high energy states — decay quickly (beyond band width) (0,0)

Making all states visible 3 states for triple point
* Reduce tunnel coupling to leads below BW e Use triple point for sanity check
= system does not switch anymore (freq. to low) * Only 3 states are expected
* Increase T to boost switching again (broader FD tails) e Lower triple point: (0,1), (1,0), (0,0)

e All 4 states are visible now
* Switching only occurs via (0,0) and (1,1), never direct
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Master equatlon approach for. transition rates T00)-0.1) = Taf (42(0, 1)),
* Tunnelling from (0,0) & (1,1) with bare lead tunnel rate
 Tunnelling from (0,1) & (1,0) given by tail of FD L0,1)-00) =21 = f(12(0,1))],
* Obtain transitionrates T,_gand T _¢
L . — 30V
* Switching frequency (large if both T|_,; and T,_,; are large) Fon-an =T/ (1.1), H
e Standard occupation probability recovered
pation p Y . Lo =1 = f((1,1))].
 S-shape, scaling with sensor bias — backaction
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Line broadening

Sensor induced level broadening

DQD charge configuration affects sensor conductance
Electron passing sensor also shifts DQD level

Sensor current shakes DQD levels = level broadening
Broadening scales with capacitance (distance to sensor)

= only significant broadening for adjacent dot

Comparing sensor response — ratio coulomb interactions a’?

Large level broadening for close dot
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Model input parameters B IWens | r
» Ratio coulomb interaction strength (left vs right dot, previous slide) 200 SN s = % 1 , :
* Lever arms: Transition width (thermally broadened) vs T = ) 0T v
* Extrapolate dot-lead tunnelling rates (beyond band-width) % . n:103§ 3 £ 10°F “ [ —

Ry TEemR e s ek N

Complete Model Oﬁ, (,,.0\7)200 ’ en (ueV)_mO
H = Hdd + Hleads + Htun + HM + Hint

Hyq =€, did, +e.did, +Ud d dd, Fermi’s golden rule (bare & + backaction)

_ T

Hleads — Z CrCikCirk F@'f = Fdd/dﬁ 5(6 — €, + (—:f)np (6) = Fdan (Ef — Ei)

k,i=L,R

Hywn = Z t(d;-rcik + h.c.)

k,i=L,R

M - El\IdeM +Z zkczkczk+thl(dhiczk+h C. ) BaCka CtiOn

= Rate equation for occup. probability

OP =) PTy—P> Ty
J J
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Theory vs Experiment

Extract S-shape and compare

* S-shape strength: Amplitude of sine-function fit
* S-shape evolution vs measurement strength (bias)
* S-shape evolution vs temperature
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Sanity check

* Biasis not heating the system
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* (0,1) —(1,0) transition width not affected by sensor bias

* Width consistent with kT

Rotate data to €;, € basis
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Population inversion

(1,0) lowest energy state
Observation of (mainly) the left dot with sensor — level broadening

Broadened level can be emptied efficiently to (0,0)
(0,0) decays quickly >

right dot far from sensor — very little level broadening
Broadened (0,1) completely below chem. potential
(0,1) metastable, electron spends a lot of time here

= low energy level efficiently emptied to high energy level
= Inversion of ground-state population: ground-state transition
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Every detector causes backaction on the measured system
Charge sensor causes level broadening in adjacent DQD
Enhanced coupling to reservoirs due to broadened DQD level
Efficient depopulation of ground-state
Population of higher energy state = Ground-state transition (inversion)
Change in measurement paradigm of ideal detectors
Even weak measurements can drastically affect the state of many body systems

Simple model (induced level broadening) captures quantitatively experiment
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