

Andrew S. Dzurak

Parity readout of spin qubits in silicon quantum dots

Amanda Seedhouse,¹ Tuomo Tanttu,¹ Ross C. C. Leon,¹ Ruichen Zhao,¹,^{*} Kuan Yen Tan,²,[†] Bas Hensen,¹ Fay E. Hudson,¹ Kohei M. Itoh,³ Jun Yoneda,¹ Chih Hwan Yang,¹ Andrea Morello,¹ Arne Laucht,¹ Susan N. Coppersmith,⁴ Andre Saraiva,¹ and Andrew S. Dzurak¹

arXiv: April 23, 2020

Taras Patlatiuk 09.10.2020

- scalable qubit readout
- Pauli spin blockade breakdown
- parity readout
- quantum error correction

Device and operating regime

(a)

- electron accumulation
- 800 ppm ²⁹Si

- right dot, two electrons in the lower valley
- the upper valley is >0.1 meV above
- closed shell, no effect on two extra electrons $(0,4) \rightarrow (0,2)$

Measurement scheme

- start at (0,1)
- electron loading into |S(0,2)>
- change detuning (0,2)->(1,1)
- spin state depends on the ramp rate anticrossings with |T_(1,1)> and |S(1,1)>
- manipulation
 - ESR
 - detuning control

Latched single-tripled readout

RG SiO

Reservoir 28ci

standard readout

- return to (0,2), □
- only singlet would tunnel
- charge reflects the spin state immediately after reaching

slow charge sensing compromises the spin state

To study the lifetime of the Pauli blockade:

- wait time τ in the (0,2)
- move to the latched region (1,2)
 - singlet will stay in (0,2) slow tunneling into the left dot
 - triplet will go to (1,2)
- charge state maps the spin state at the moment of latching

Parity readout

- Triplet states will eventually decay to |S(0,2)>
- odd-parity |T₀> decays in 200 us
 - T_> decays in 5 ms
 - |T₊> is also long
- if the time for the charge sensing at □ is in orange region, odd-parity states (|S>, |T₀>) are indistinguishable
- even-parity states (|T₊>, |T₋>) can be distinguished

Measure F_{blockade}

- choose the direction of B
- fit the blockade lifting for the state |T₀> can change by 3-4 orders of magnitude

Look for the correlation between $\Gamma_{blockade}$ and $\Delta E_Z = \Delta g \mu_B B$

- Δg due to spin-orbit coupling induced by the interface
- large Dresselhaus component, controlled by the direction of B

Measure ΔE_Z using ESR

electron spin resonance, rotate one spin

• initialize in $|\downarrow\uparrow>$

go adiabatically through $|\!\downarrow\!\uparrow\!\!>$ - $|\!\uparrow\!\downarrow\!\!>$ anticrossing

- apply microwave pulse f_{ESR1} to rotate $|\downarrow\uparrow\rangle$ to $|\uparrow\uparrow\rangle$ f_{ESR2} to rotate $|\downarrow\uparrow\rangle$ to $|\downarrow\downarrow\rangle$
- return to (0,2), dip in the return probability at the resonance frequency
- difference between f_{ESR1} and f_{ESR2} gives ΔE_Z if $\Delta E_Z \ge J$, $|T_0(1,1)>-|S(1,1)>$ splitting

Measure ΔE_Z using S-T oscillations

detuning, ε

- oscillations between $|S(1,1)\rangle$ and $|T_0(1,1)\rangle$ with frequency ΔE_Z
- initialize in |S(1,1)> ramp quickly through (0,2)-(1,1)
- dwell time time spent at (1,1) configuration

Measure ΔE_Z using S-T oscillations

- excellent agreement between theses two ΔE_Z extraction methods
- horizontal shift due to Stark shift
 - ΔE_Z was measured deep in (1,1)
 - Γ_{blockade} was measured at (0,2)
- $\Gamma_{blockade}$ increases as ΔE_Z increases

Model

$$\hat{H} = \begin{pmatrix} -\varepsilon & t & 0\\ t & 0 & \Delta E_{\mathbf{Z}}\\ 0 & \Delta E_{\mathbf{Z}} & 0 \end{pmatrix}$$

 $\frac{d\hat{\rho}}{dt} = -i[\hat{H},\hat{\rho}] + \hat{\hat{\mathcal{L}}}[\hat{a}](\hat{\rho}).$

master equation for the density matrix

$$\hat{\mathcal{L}}[\hat{a}](\hat{\rho}) = \hat{a}\hat{\rho}\hat{a}^{\dagger} - \frac{1}{2}(\hat{a}\hat{a}^{\dagger}\hat{\rho} + \hat{\rho}\hat{a}\hat{a}^{\dagger}).$$

$$\hat{a}_{\text{dephasing}} = \begin{pmatrix} \frac{1}{\sqrt{2T_2}} & 0 & 0\\ 0 & -\frac{1}{\sqrt{2T_2}} & 0\\ 0 & 0 & -\frac{1}{\sqrt{2T_2}} \end{pmatrix}$$

$$\hat{a}_{\text{relaxation}} = \begin{pmatrix} 0 & \frac{1}{\sqrt{T_1}} & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

- |S(0,2)> and |S(1,1)> coupled with t
- $|S(1,1)\rangle$ and $|T_0(1,1)\rangle$ coupled through ΔE_Z
- charge dephasing, ε fluctuations, T₂
- charge relaxations, |S(1,1)> into |S(0,2)>, T₁
- initialise in pure $|T_0(1,1)\rangle$, oscillations with exponential decay $Ae^{-t\Gamma_{\text{blockade}}} + B$

Charge relaxation and dephasing times

- T_1^{charge} and T_2^{charge} are unknown
- fit: $T_1^{charge} = 0.2 \ \mu s$ and $T_2^{charge} = 0.2 \ ns$
- T₂^{charge} fits better with the literature dephasing may be the decay mechanism

Analytical method

improve parity readout fidelity by reducing t

Conclusion

- origin of the parity readout
- blockade lifting rate as a function of T_1^{charge} and T_2^{charge}
- found indication that charge dephasing causes blockade lifting