Universal quantum logic in hot silicon qubits

L. Petit,¹ H. G. J. Eenink,¹ M. Russ,¹ W. I. L. Lawrie,¹ N. W. Hendrickx,¹ J. S. Clarke,² L. M. K. Vandersypen,¹ and M. Veldhorst¹

¹QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands

²Components Research, Intel Corporation, 2501 NE Century Blvd, Hillsboro, Oregon 97124, USA

Simon Geyer, group meeting talk 13 Dec 2019

Large-scale quantum computing

- scalable qubit
- scalable architecture

- problems:
 - bottleneck of interconnections to RT electronics
 - many qubits -> high cooling power needed

Idea: quantum integrated circuit

- quantum integrated circuit
 - on-chip electronics for qubitcontrol
 - no interconnection bottleneck
 - dissipates large amount of heat
 -> more cooling needed

Idea: quantum integrated circuit

- Why should we operate at 1-4K?
 - on-chip electronic and large number of qubits generate heat
 - cooling power increases with temperature

technology	temperture (K)	typical cooling power (W)		
l ⁴ He	4.2			
1K pot	1.8	10-1)	cooling power increases by factor 10 ⁴
³ He	0.8	10-2		
³ He/ ⁴ He-dilution refrigerator	20 x 10 ⁻³	10 ⁻⁵		

• challange: good qubit properties at high T

Loss-DiVincenzo spin qubit

- confine electrons in QDs
- encode information in spin of a single electron¹
- qubit states $|0\rangle$ and $|1\rangle$:

$$|0
angle = |\uparrow
angle$$
 $|1
angle = |\downarrow
angle$

5

Device

- ²⁸Si substrate (spins-free)
- P-gates accumulate e⁻-QDs at Si-SiO₂ interface
- B-gates tune tunnel barriers
- charge sensor
- MW antenna for ESR

Double QD

4 electrons in left dot fill shell
 -> only use valence electrons

Double QD – states

45 (1,2) (1,1) ΔU (mV) 15 (1,0) (0,2) (0,1) -15 (0,0) -50 50 150 $\Delta \epsilon$ (mV)

equivalent:

(1,2) (1,1)

equivalent:

ΔU (mV)

Initializing the qubit

- goal: well-defined state, e.g. $|du\rangle_{11}$
- use fast spin relaxiation in (0,2) charge state to populate |S>₀₂ ground state
- adiabatic pulse to (1,1) gives $|du\rangle_{11}$

Manipulation

- MW signal -> oscillating B-field rotates spin -> arbitrary single-qubit rotations
- slightly different resonance frequency
 ->allows to address qubits individually

Readout

- spin-to-charge conversion:
 - singlet -> current
 - triplet -> no current
- only one qubit can be read out

Readout

- different current measured for singlet and triplet states
- $|ud\rangle_{11}$ mixes with singlet -> hard to distinguish
- alternative: parity-readout¹

Qubit operation cycle

(1,1)

15

Single-qubit characterization

- Rabi oscillations: constant drive
- Ramsey sequence: dephasing at equator

Single-qubit gate fidelity

- randomized benchmarking:
 - apply certain number of random **Clifford** gates
 - go to triplet state
 - read out
- fit yields fidelities ~99% for one single-qubit gate
- readout errors have no influence on this method

Hot spin qubits

- so far: T = 1.1K
- T₂^{*} only weakly dependent on T
- limiting factor¹: $T_1 \propto T^{-5}$

Two-qubit characterization

- exchange interaction couples spins
- qubit 1 changes resonance frequency depending on state of qubit 2 and vice versa

Two-qubit characterization

- CROT gate (conditional rotation)
- qubit 1 is driven only if qubit 2 is in a certain state
- CROT + single-qubit gates = CNOT
- coherent manipulation
- scalable?

Two-qubit characterization

• CROT is realized at all 4 transitions

Conclusion

- single-qubit gates at 1.1K with high fidelity (99%)
- CROT gate for universal quantum computing at 1.1K
- T_2^* independent of temperature
- 2 qubit readout? readout fidelity at high T?
- scalability of qubit-interactions?

Appendix

