Spin-orbit interaction and induced superconductivity in an one-dimensional hole gas
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Introduction and Motivation

Goal:

Promising candidate: One-dimensional hole gas in Ge/Si core/shell NWs




Sample Design and Properties

SEM TEM X-ray Spectroscopy
a Device layout b cross section of wire c Elemental analysis

Ge
: Si
[ |
O
e QD formed between contacts * Gecore (.r - 3 nm) ’ P.ure Ge core
e Crystal direction [110] e Sishell (1 nm)
© Alleads * Amorphous silicon
+ Wafer: Si/SiN, oxide shell (3 nm)

Remark: sample annealing (180°C) -> contact resistance drops from MOhm to kOhm regime




Superconductivity and Kondo Effect
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Andreev Level and Multiple Andreev Reflection

d
— b 2A/3 A 2A d
d r/u single L1 I
. S - e data = A=0.19 meV 1.0
< 1.5}
a | T
T | _ /_ doublet \ | S 1 o1
—0.06 T T >
even odd even 8 U c -
© h
- n
_ . £ 05[m
> -0.08 <
2 10} » data @ @)
> - T = =
= 7,=0.26 om m
S 5|  T=0.19 |
-=0.10 - T,=0.1 ) 8
_ - 0.0 ] \(! O\
0 l | ~1.0 -0.5 0.0
1 0.00 0.25 0.50 Vig (V)
V (mV) A, 2A Vv (mV)
EAL: 0
Andreev Level (AL) * ARatl,and NR atl, *  Fitting of dI/dV used to extract A
Energy transition ground to excited state * Leftlead tunneling spectroscopy probe Fitting of | to extract transmission T, and T,
Ground state switches btw singlet and doublet of DOS _ * Increase of T below V,, =-0.8 V due to the
Upper part: multiple Andreev reflections (MAR) * Ex=0->measureitateV=A increase of Etand [, and T,

e Ground state transitions indicated “->”



g-factor anisotropy
e G-factor from Kondo peak splitting
Strong anisotropy at V,, =-0.8 V
Maximum g = 3.5
* IsotropicgatV,,=-0.5V

di/dv 0.1 0.3 dl/dV 0.1 0.2 dl/dvV .1 0.3 d
(2e’/h) m—mmm (2¢%/h) mE—mm (2€’/h) m——— d B 9./J, © 9,/d; A 9,/9, 10
= - 3 o
(@] TQ
§ 2t § o
}-'c_.', DQ é 05 =
o Q 2
El'_""_"_%_%_ E ©
ol [ ]
experiment - =
% &
0 | 1 | 0.0 L |¢ Q,
—-1.0 -0.5 0.0 -1.0 -05 0.0
ng ng {V)
* Increase of anisotropy sets in at Vpg=-0.7V
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Hypothesis: transition from isotropic to
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4z y Z 47 X .z +y X -y ‘ anisotropic behavior related to the
direction occupation of two bands in the NW




/eeman and Orbital Effect
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Theoretical model: infinite wire
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Two contributions to the anisotropy: Zeeman & Orbital
Zeeman similar for both bands
Orbital contribution differs
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Observed isotropic and anisotropic g due to orbital effect




Nature of SOI
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Confinement along NW included

Some QD levels are a mixture of both bands
Qualitative agreement with experiment
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Anisotropy
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Hard Superconducting Gap

Low conductance regime
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e Conductance suppression remains as the
gap size decreases towards B.

 Hardsuperconducting gap

di/dV (2e?/h)

High conductance regime

dli/dV (2e?/h)

Critical fields:

* B;=220mT
* Bg,=220mT
© Bcy=45mT

T increased -> AR processes cause
significant conductance inside the SC gap
Conductance suppression: ill-defined
measure of DOS and quality of induced SC
Use Kondo peak to examine DOS

Existence and size of Kondo peak:
indication of quasiparticle DOS
Kondo peak only appears after gap is closed



Summary and Conclusions

e Observation of:
 Andreev levels with ground state transitions

e SOI from the coexistence of two modes in the NW
e Hard SC gap

 Promising candidate for creating a 1D topological SC
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