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Microwave cavity detected spin blockade in a few electron double quantum dot
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We investigate spin states of few electrons in a double quantum dot by coupling them weakly to a
magnetic field resilient NbTiN microwave resonator. We observe a reduced resonator transmission
if resonator photons and spin singlet states interact. This response vanishes in a magnetic field
once the quantum dot ground state changes from a spin singlet into a spin triplet state. Based
on this observation, we map the two-electron singlet-triplet crossover by resonant spectroscopy. By
measuring the resonator only, we observe Pauli spin blockade known from transport experiments at
finite source-drain bias and detect an unconventional spin blockade triggered by the absorption of

resonator photons.



Overview / Motivation

Study spin states in DQD using NbTiN resonator R (previously used for charge
related phenomena / valley physics)
early days: direct transport / charge sensing

Reduced transmission due to singlet— R interaction

No response for triplet — R
=> distinguish

Mapping singlet — triplet crossover by resonant spectroscopy
Observation of Pauli spin blockade using R only

Unconventional spin blockade (absorption of R photons)



Device Layout

* Double quantum dot:

GaAs / AlGaAs heterostructure

Au top gates

V| ,V; control charge configuration

V; control interdot tunnelling strength
* Charge sensing:

Sensor dot, operated as QPC

Cavity detection:
e Left plunger gate (orange) connected to V
end of A/2 coplanar waveguide resonator sd
* Resonance v, =8.33 GHz
* Linewidth k/27 = 101 MHz (Q ~ 80)
e NbTiN thin film (15nm) => can use up to 2T in-plane field

Cavity, zoomed out (previous work)
* DQD with 1 gate connected to resonator
e  M: Ohmic contacts
* (C:top gates
* I:Inductor
* AlGa, As heterostructure 35nm below surface A AN
T. Frey et al., PRL 108, 046807 (2012)
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Device Layout

DC transport
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Resonant / dispersive readout

t/h =4.5 GHz

* Two electron regime, only singlet / triplet relevant
e Singlet charge qubit (1,1) — (0,2)
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Resonant / dispersive readout

Two electron regime, only singlet / triplet relevant

Singlet charge qubit (1,1) — (0,2)

Measure normalized resonator transmission

(A/A,,)? at resonance (8.33 GHz)
2 Regimes:
» Dispersive:  Equpit > Eresonator (28> hVv))
* Resonant: Equbit < Eresonator (2t < hV))
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Coupling of cavity and DQD

electric dipole interaction cavity E-field and charge qubit

coupl. strength: g /2w = 28 MHz
Qubit decoherence: v,/27 = 357 MHz

weakly coupled probe (g.<< v,, k), no coherent influence

Distance btw triple points: 510ueV (123 GHz) interdot

capacitive + tunnel coupling
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Singlet - triplet crossover

* Resonator response R(0,B;,,,.) @ ~ resonance

Binplane: control T,T, split of from T, (Zeeman)
=> can change ground state S > T,

Resonator response
* dispersive: single peak
* resonant: double peak, located at d,
e disappearance of peaks at finite B (change
of ground state from singlet to triplet)

*  No S-T hybridization (spin-orbit / hyperfine)
assumed

Why no signal for (1,1)T, ?
* (1,1)T, symmetric charge configuration
= no dipole moment
Signal for ground state GS
e GSisa mixture of (1,1)S and (0,2)S
= not symmetric
= dipole moment

Extraction of amplitudes for further analysis
* Lorentzian line shape fits
= get amplitudes Ay, A,, A

(a) 092

0.96 1 2 (b) 096 0.98 1 2
b i Al , : (WA )
2t > hy, (t/h=4.2 GHz) 2t < hv, (t/h=2.8 GHz)
1.5+
= :
= 1
0.5
ol = - |
2
1.5}
E
=a]
0.5
0 9 ———
oy + . 1oy rwimai,
"y, | /"‘ . B AE‘ 1|| !'
T 50.98 - f
die, !0’/ < IL-'A 2

G2 6 3 4 6
6/h [GHz]

-8 & -4 0

fll té_ 8
&/h [GHz]



Singlet - triplet crossover |

* Interpretation of qubit — cavity coupling (rot. wave approx.) (a) "
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Spin blockade (cavity)

e DC current through DQD below detection limit (<1pA)

e Omit hybridization and Zeeman splitting for qualitative
discussion (present in simulation)

o I>>I (I' =T, the spin flip rate)

(a)

Region B:
e 2 electron ground state (not affected by bias)
= same response as in zero bias case for B>0.5T
(spin blockade: only one peak since)

Region A (square) @ negative bias:

* spin blockade lifted once (0,1) is within bias
window:

(1,1)T, - (0,1) » (0,2)S-> (1,1)S+y

* green star u((l,l)T+) = Uy

* upper end ,u((O,Z)S) = U

e above: (0,1) is ground state & does not interact
with resonator

Region C @ negative bias
* should be same as A for symm. lead tunnel rates
= dominant (1,2) population
= does not interact with resonator
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Spin blockade (transport)

e DC current through DQD below detection limit (<1pA)

e Omit hybridization and Zeeman splitting for qualitative
discussion (present in simulation)

o I>>I (I' =T, the spin flip rate)

e standard transport spin blockade
e (1,2) within bias window
e process: (1,2) - (1,1)T, = blocked

Why still transport (nonzero signal)?
* Some relaxation to (0,2)S possible (spin flip)
e small tunnelling rate to left lead
e comparable spin flip rate
=> system ~50% in (0,2)S
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Spin blockade (unconventional)

e DC current through DQD below detection limit (<1pA)

e Omit hybridization and Zeeman splitting for qualitative
discussion (present in simulation)

o I>>I (I' =T, the spin flip rate)

Region B (Square):
e unblocked in standard transport
e Here: small regime of spin blockade

How does it work?
e System should be in (0,2)S ground state
e Photon absorption — (1,1)S
e Canfill one electron from right lead: (1,2)
e Decayto (1,1)T, => spin blockade

= transport spin blockade triggered by photon
absorption
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Summary

Investigation of spin states using a cavity coupled DQD
Continuous mode operation, no pulsing required
Observation of singlet — triplet crossover (mapping out transition)
Various spin blockade mechanisms investigated

e resonator spin blockade

* normal transport spin blockade
e unconventional spin blockade triggered by photon absorption



Singlet - triplet crossover |

Since £ << 42. gc. the resonator-qubit interaction is treated
as a weak perturbation. In this picture, the Fermi Golden rule
determines the rate at which a photon in the resonator and
qubit interact as

27
h

21 .
; g>sin(0)’p,  (20)

Ton-loy = —| (€| Hilg) [*pigy =

with the electric dipole interaction Hamiltonian H; from
Eg. (7) and the ground state occupation probability p),)-

If the qubit is in the ground state, it can be excited by ab-
sorbing a photon from the resonator. We can model this pro-
cess with a classical rate equation. The resonator can have
one or zero photons with probabilities p; and pg. In addition
to resonator-qubit interaction, the number of photons in the
resonator decreases at rate riy: by decay in the resonator. In
steady state, the rate equation is

p1=Tppo- (Pph—|g) + Hint)pl =0, (21)

where I'p is the rate at which the resonator probe tone feeds
photons into the resonator.
With pp = 1 — p1, we arrive at
I'p
l“ph_m + Fp + Kext

p1= (22)

The transmission of a two-port coupled resonator is given as

th_|g) + rp + Kint

K
}12 o ext

5 PL= (23)

where rqyt 18 the rate at which resonator photons couple with
the ports. For I',;_|y < fing, I'p, we finally obtain with
Eqns. (20) and (23)

A? o1 - C*plgy- (24)

where C'* 1s a constant.
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Tunnel coupling extraction

V_=300 uV B=800mT (b) V_=-300 uV, B=800mT
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