

Quantum Coherence Lab Zumbühl Group

Gate-Based Single-Shot Readout of Spins in Silicon

A. West, B. Hensen, A. Jouan, T. Tanttu, C. H. Yang, A. Rossi, M. F. Gonzalez-Zalba, F. E. Hudson, A. Morello, D. J. Reilly and A. S. Dzurak

arXiv:1809.01864, 2018

Motivation

- Spins in silicon quantum dots are good candidates for large scale quantum computers
- Currently, spin information is gained by Pauli spin blockade and charge state readout by SETs
- Scaleability is reduced due to size and complexity of one qubit
- > New readout mechanism with rf-reflectometry on the confinement gate
 - Decreases size and complexity
 - Can achieve similar readout fidelity

Device

- Si with 5.9 nm thick SiO₂, gates are Al separated with Al₂O₃
- Confinement Gate C under all other accumulation gates
- G_2 embeded in L-C resonant cirquit ($f_0 = 266.9$ MHz, L = 400 nH, $C_p = 0.89$ pF, Q = 38)
- Additional SET for comparison -> shows double dot features
- Important parameter: quantum capacitance C_q

SET and Reflectometry Measurements

• Reflectometry senses change in the quantum capacitance C_q at fixed frequency $f = f_0$: $\Delta \phi \approx -\pi Q C_q / C_p$

- Can only detect interdot charge tunneling (in contrast to SET)
- Intrinsic width of charge transition is set by t_c at low rf probe power with $t_c = 12.0 \pm 1.5$ GHz
- SNR extracted from comparison of I and Q signals at $\epsilon = 0$
 - SNR = 2 at $\tau_m = 12$ ms

Spin-Readout Capability

- (4,0)-(3,1) due to low lying orbital states in (1,0)-(0,1)
- Two initialization protocolls
 - A1 -> A2: singlet
 - B1 -> B2: mixture of singlet and triplet
- Verification by subtracting B from A
 - Resulting partial blockade can be seen

(3,1)

5,Ref

(3,0)

• Further verification by coupling S with T^- (A1 -> A2 -> 3 -> 4,RO)

4.RO

A1

(4,1)

A2 (4,0)

Eigenenergy

Detuning ε

blockade

• Reduced singlet return when ϵ at S- T^- anticrossing

B2

-5

Detuning ε (meV)

-5

Detuning ε (meV)

Single Shot Readout

S

S+T-

500

S

T-

0.5

6

- Slow pulse to $S T^-$ crossing to initialize evenly mixed $S + T^-$ state, readout at 4,RO
- Clear correlation of dispersive shift and SET current
- Estimation of readout fidelity includes $T_1 = 4.5 \pm 0.5$ ms
 - $F_{avg}^{SET} = 88.2 \pm 1.9$ % with $\tau_m^{SET} = 1.0$ ms
 - $F_{avg}^{dispersive} = 73.3 \pm 1.2$ % with $\tau_m^{dispersive} = 2.0$ ms

(4.1)

(4,0)

lockade

4.RO

A1

- Can be improved by
 - superconducting spiral inductor-based resonators
 - optimized external matching techniques

а

(3,1)

5,Ref

(3,0)

parametric amplification

a

200

Conclusion

- Characterization of a gate-based single shot readout of spins in Silicon
- Sufficient signal to noise with less complex gate design (omitting the SET)
- Readout of many spins in parallel possible with compact gate structures

