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Outline

* Motivation
e Their system

* What they have done

e Use g-factor difference from the SO coupling at the Si/SiO2 interface to get second
axis of control for DQD S-T qubit

e Study qubit noise and SO interaction at interface

e Quantitative characterization of charge noise in MOS qubit (quasi-static detuning
variance and Hahn-echo time)
e Demonstrate that MOS interfaces have inherent properties for two-axis qubit control

e Conclusion



Motivation

Persistent concerns about disordered Si/SiO, interface
leading to

e Additional charge noise

e Variable g-factors
Many have used Si/SiGe heterostructures to move interface
away

e Results in small and/or variable valley splitting
Want a direct characterization of charge noise at MOS
interface
Means to characterize a SO S-T qubit and its coherent qubit
rotations
See full magnetic field angular dependence
Spend more time with spin qubits, particularly at Si interface
to SiO,



The System

Fully foundry-compatible process with single gate layer MOS poly-
silicon gate stack on an epitaxially-enriched 22Si epilayer with 500 ppm
residual 2°Si

Hall bar measurements on same wafer yield

e n=>57x10" ¢m™2
e u=4500cm?V-1s1
e V=11V

e T, ~150 mK

Accumulation mode using highly-doped n+ poly-silicon gates
Tune lower half of device to form DQD (one tunnel-coupled to LRG)
Upper half used as SET charge sensor

200nm n* poly-S

35nm SiO,

285j Substrate




Spin-Orbit Interaction

a
Interface leads to SOI:
» B field parallel to interface leads to cyclotron motion of electrons
establishing net momentum along interface
e Coupling of this momentum perpendicular to the electric field at the
interface produces the SOI d
Rashba due to vertical electric potential at interface (structural inversion
asymmetry)
Dresselhaus due to microscopic interface inversion asymmetry (potentially
variable interatomic fields)
. . b
Not unique to this system [010]
e Analysis of interfacial effects on g-factor variability useful in other Betio 4
Bof".
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uning the DOQD  °

Near zero detuning (¢ = 0), J dominates = rotations around Z-axis

Deep into (1,1) charge sector (¢ > 0), J small = rotations around X-axis (different

Zeeman energies for the two dots)

 =» use inherent g-factor difference at interface as second axis of control!
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Operation of the S-T Qubit

* Basis of eigenstates of the two-spin system in limit of large S-T exchange J (S& T,)
* Small applied B-field splits off m = +1 triplet states by E, = gugB

* |nitialize in (2,0) a
e Rapid adiabatic pulse to (deep) (1,1) state
» Difference in Larmor frequency yields rotations in X-axis between S(1,1) and T,(1,1)

2rf = Aw = Agug ®/,
e Driving closer to the anticrossing lets J dominate and drives the Z-axis rotations

* Detection using Pauli spin blockade [1] and the remote charge sensor to determine
if state passed through (2,0) or was blockaded in (1,1) during readout
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[1] Petta, Marcus et al., PRB 72, 165308 (2005)



Coherent Rotations

S
(0
e Clear oscillations (X-axis) at large detuning to (1,1) manipulation point
» Difference in slopes indicative of angular dependence of Ag
e Qualitatively consistent with different SOl in each dot o @ W

o Detuning « o W

e Extract Aa = 1.89 MHzT 1, AB = 15.7 MHzT 1

Charge sensor current as function of B
field along [1-10] direction
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B-Field Dependence

* Choice of B-field direction utilized to maximize SOI to drive spin rotations, or cancel them out
e Potentially important for uniform spin-splitting between multiple QDs in devices

e Qut-of-plane field with respect to [001] (6) suppresses SOI difference
* In-plane field with respect to [100] (¢) can maximize SOI difference
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Timescales

Nuclear spin flips (background 2°Si) lead to time-variation of Overhauser field,
which results in decay in time of coherent oscillations (here: X-axis).

Decay in oscillation amplitude fits a Gaussian consistent with quasi-static

noise

o T, =1.6 us extracted for long-averaging timescales assuming decay like

exp[— (t/TZ*)Z]

Relative absence of B-field dependence suggestive that the interface SOI
doesn’t contribute to T, =» no additional noise due to MOS interface

(consistent with bulk 2°Si)
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Charge Noise Characterization

* |nitialize in S$(0,2) state then drive to S(1,1) near J(e) = 0, then drive to and from J(¢)
around € = 0 for a waiting time, rotating qubit around Bloch sphere

» Associate saturation of T, at deep detuning with dominant noise mechanism going from
charge noise on the confinement gates to magnetic noise due to residual 2°Si
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Vorführender
Präsentationsnotizen
In (b): charge sensor current at various detuning. High current  higher singlet prob.

B = 0.2 T in [100] directions gives residual small (0.5 MHz X rotation freq)


Conclusion

e All-electrical two-axis control of MOS DQD using the intrinsic details of the system at
the interface
e Exploits interfacial SOI + detuning for two axis control

 Charge noise characterized at the interface

e T, comparable to other systems (Ga/AlGaAs ; Si/SiGe)

Thanks for listening!
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