

Atomically engineered electron spin lifetimes of 30 s in silicon

Thomas F. Watson, Bent Weber, Yu-Ling Hsueh, Lloyd C. L. Hollenberg, Rajib Rahman, Michelle Y. Simmons

> Liuqi Yu 28.04.2017

Introduction

Motivation

Long T1 times:

- of interest for single shot readout fidelity
- Intrinsic upper limit to spin qubit coherence time T2 ($T_2 \le 2T_1$)

Why silicon?

weak spin orbit coupling

lack of piezoelectric phonons

Device and characterization

Scanning tunneling microscope (STM) hydrogen lithography

atomistic tight binding model

~ 20 nm center-to-center distance of D1 and D2

~ 19 nm to the SET charge sensor

GT, G1,G2, GSET are used to tune the electrochemical potentials of the dots and SET island

D1:3P

D2:2P

Spin relaxation measurements

Three step pulse sequence

No change in the spin relaxation times if an extra electron is added to the other dot.

Spin relaxation for donors

Spin orbit interaction acts as perturbation and **mixes the orbitals and spin states**, which leads to spin relaxation via emission of phonons

S. Amasha et al., Phys. Rev. Lett. 100 (2008).

Spin relaxation mechanisms in silicon

single-phonon mechanisms of valley repopulation and the single-valley mechanism --- valley-orbit splitting

$W \sim B^5$

Johnson noise from reservoirs or gates, causing relaxation via Rashba spin-orbit coupling.

$W{\sim}B^3$

Spin relaxation vs confinement

Confinement:

Number of donors

Number of electrons

Yu-Ling Hsueh et al., PRL 113, 246406 (2014)

This tighter confinement potential reduces the electron wave function overlap with the lattice and results in a larger valley-orbit energy gap, combining to reduce the phonon-induced relaxation.

Sequential Readout Fidelity

Sequential Readout Fidelity

U N I B A S E L

Spin-to-charge conversion error sources:

- 1. spin-down electron tunnels out of the ground state.
- 2. spin-up electron relaxes before it tunnels out.

Spin-to-charge conversion fidelities: Spin down (β) and spin-up (α) > 99.9%

Electrical detection error sources:

Spin-up state is missed being accounted due to bandwidth.
spin-down state is mistakenly accounted due to noise.

Electrical detection error fidelities: $F_{\perp} = 100\%$ and $F_{\uparrow} = 99.7\%$

Total fidelity: $F_m = \frac{\beta F_{\downarrow} + \alpha F_{\uparrow}}{2} = 99.8\%$

Fidelity of sequential readout of the nth electron

$$F_m(n) = (\beta F_{\downarrow} + \alpha F_{\uparrow} \exp[-\Delta t * (n-1)/T_1])/2$$

Summary

Spin relaxation of STM patterned phosphorus donors in silicon has been investigated.

- T1 time as long as 30 s has been achieved.
- Different spin relaxation mechanisms are discussed.
- High fidelity sequential readout has been demonstrated.

Outlook

- Spin relaxation anisotropy measurements
- Measurements and universal control of two qubit system with proper exchange coupling

Thank you

