

Quantum Coherence Lab Zumbühl Group

Electrical modulation of weak-antilocalization and spinorbit interaction in dual gated Ge/Si core/shell nanowires

R. Wang, R. S. Deacon, J. Yao, C. M. Lieber and K. Ishibashi

Semiconductor Science and Technology 32, 094002 (2017)

Florian Froning November, 03rd 2017

Outline

Outlook

Spin Relaxation

Weak Antilocalization

Experimental Setup

Motivation

Motivation

- direct Rashba spin-orbit interaction¹
- scales linearly with transverse electric field
 - but direct, dipolar coupling to spin
- first order effect (compared to third order effect in conventional Rashba SOI)
 - expect one order of magnitude larger Rashba constant compared to e.g. InSb, InAs
- Measurements on SOI in Ge/Si nanowires
 - statistical analysis of Coulomb peak distribution²
 - weak anti-localization study with single gate³

Kloeffel et al., PRB **84**, 195314 (2011)
 Higginbotham et al., PRB **112**, 216806 (2014)
 Hao et al., Nano Lett. **10**, 2956 (2010)

Experimental Setup

Weak Antilocalization

- WAL over a wide range of densities n=0.7-7x10⁹ m⁻¹
- magnetoconductance traces fit to eq. (3) + classical magnetoresistance

$$G(B) = G_{\infty} - \frac{2e^2}{hL} \times \left[\frac{3}{2} \left(\frac{1}{l_{ph}^2} + \frac{4}{3l_s^2} + \frac{1}{l_B^2} \right)^{-\frac{1}{2}} - \frac{3}{2} \left(\frac{1}{l_{ph}^2} + \frac{4}{3l_s^2} + \frac{1}{l_e^2} + \frac{1}{l_B^2} \right)^{-\frac{1}{2}} - \frac{1}{2} \left(\frac{1}{l_{ph}^2} + \frac{1}{l_B^2} \right)^{-\frac{1}{2}} + \frac{1}{2} \left(\frac{1}{l_{ph}^2} + \frac{1}{l_e^2} + \frac{1}{l_B^2} \right)^{-\frac{1}{2}} \right].$$
(3)

 $l_B^2 = C_1 l_e l_m^4 / W^3 + C_2 l_e^2 l_m^2 / W^2$

Dephasing and Charge Decoherence

- - no magnetic field induced dephasing of carriers

- from temperature dependence of characteristic lengths
 - charge decoherence dominated by Nyquist process

Spin Relaxation

- Elliot-Yafet effect (spin relaxation due to scattering)
 - expect spin relaxation lengths of 500-1000 nm
 - incompatible with experimentally extracted spin relaxation length
- D'yakonov-Perel effect (spin relaxation between scattering events)
 - include suppression of spin relaxation due to dimensional confinement $\frac{1}{l_s^2} = \frac{1}{D\tau_s} = \frac{W^3}{C_3 l_e l_R^4}$

 $I_R = 4 - 10 \text{ nm}$ $\alpha = 3 - 6 \times 10^{-11} \text{ eVm}$ $E_{RSOI} = 1.5 - 3 \text{ meV}$

Electric Field Control

- Rashba SOI coefficient α varies with electric field inside the wire
- large Rashba constant of 5 nm²
- evidence for dipole coupled, direct Rashba spin-orbit interaction

Summary + Outlook

- independent control of carrier density and electric field with dual-gated sample
- observation of large spin-orbit energy: 1-6 meV
- tunable by a factor of 3 with electrostatic field
- evidence for predicted direct Rashba spin-orbit interaction

Electric Field Control I

spin lifetime is largest when holes are confined in the center of the wire

Electric Field Control II

Universal Conductance Fluctuations

apply small AC voltages to top and bottom gate to average over UCF

