Conductance Quantization at Zero Magnetic Field in InSb Nanowires

Jakob Kammhuber,† Maja C. Cassidy,† Hao Zhang,† Önder Gül,† Fei Pei,† Michiel W. A. de Moor,† Bas Nijholt,† Kenji Watanabe,‡ Takashi Taniguchi,‡ Diana Car,¶ Sébastien R. Plissard,†,¶,§ Erik P. A. M. Bakkers,†,¶ and Leo P. Kouwenhoven*,†

†QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
‡Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
¶Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Friday Afternoon Meeting-Talk
July 15th 2016
Challanges/Motivation

- Majoranas:
 - 1D semiconductor
 - Strong SOI
 - Proximity induced super conductivity
Challenges/Motivation

- Majoranas:
 - 1D semiconductor **Hard to achieve**
 - Strong SOI
 - Proximity induced super conductivity

- No disorder between S and D (O(μm))!
 - Structural/crystal imperfection of NW
 - Surface states in (i.e InAs)

- More trajectories in 2D → less affected by disorder
Challenges/Motivation

• Majoranas:
 • 1D semiconductor
 • Strong SOI
 • Proximity induced super conductivity
 • No disorder between S and D (O(μm))!
 • Structural/crystal imperfection of NW
 • Surface states in (i.e InAs)
 • More trajectories in 2D → less affected by disorder
 • Achievement of ballistic conductance at finite B fields → not desired for observation of Majoranas

Normal confinement in 2D
- Confinement in x and y direction
 \(\rightarrow\) depletion of 2DEG beneath contacts
 \(\rightarrow\) subbands each carrying \(2e^2/h\)
Confinement

- Normal confinement in 2D
 - Confinement in x and y direction
 - Depletion of 2DEG beneath contacts
 - Subbands each carrying $2e^2/h$

- NW has rotational symmetry \rightarrow different subband spacing
 - Geometric confinement (causes degeneracy)
 - Electrostatic confinement via gates (could lift degeneracy)
Bottom up approach:

• Bottom gate definition
• hBN as dielectric for protection of NW
• Place InSb NW (grown via MOVPE)
• Contacts Cr/Au (10/100nm) 150-400nm spacing
• ammonium polysulfide etching \rightarrow sulfur passivation \rightarrow local surface doping \rightarrow better contacts
• Measurements at 15mK BT using standard lock-in techniques
• InSb NW: electron wave function confined to the center of the NW
Bottom up approach:

- Bottom gate definition
- hBN as dielectric for protection of NW
- Place InSb NW (grown via MOVPE)
- Contacts Cr/Au (10/100nm) 150-400nm spacing
- Ammonium polysulfide etching \rightarrow sulfur passivation \rightarrow local surface doping \rightarrow better contacts
- Measurements at 15mK BT using standard lock-in techniques
- InSb NW: electron wave function confined to the center of the NW
DC bias

- Pinch-off traces for 4 different devices (same chip)
- Jumps in conductance from $1G_0$ to $3G_0$ and $3G_0$ to $5G_0$
- Investigate green device in more detail
DC bias spectroscopy

- Sweep DC bias and gate voltage
- Areas of constant conductivity → diamond shaped
- Allows to investigate the subband spacing:
 - $\Delta E_{\text{subband}}$ and lever arm $\eta = \frac{\Delta E_{\text{subband}}}{V_{\text{gate}}}$
 - Small $2G_0$ plateau → small energy splitting between 2nd and 3rd subband
DC bias spectroscopy

- Sweep DC bias and gate voltage
- Areas of constant conductivity \(\rightarrow \) diamond shaped
- Allows to investigate the subband spacing:
 - \(\Delta E_{\text{subband}} \) and lever arm \(\eta = \Delta E_{\text{subband}} / V_{\text{gate}} \)
 - Small \(2G_0 \) plateau \(\rightarrow \) small energy splitting between 2nd and 3rd subband
- Apply B field to lift spin degeneracy:
 - \(E_n \downarrow \uparrow \rightarrow E_n \downarrow , E_n \uparrow \)
Zero bias conductance

- Apply B-field along B_z
- First subband splits as expected (\leftrightarrow, \leftrightarrow)
Zero bias conductance

- Apply B-field along B_z
- First subband splits as expected (\leftrightarrow, \leftrightarrow)
- Second subband behaves differently

$E_{2,3}^{\uparrow}$

$E_{2,3}^{\downarrow}$

$g\mu_B B$
Zero bias conductance

- Apply B-field along B_z
- First subband splits as expected (\leftrightarrow, \leftrightarrow)
- Second subband behaves differently

$3T \rightarrow 1.5G_0$ emerges
Zero bias conductance

- Apply B-field along B_z
- First subband splits as expected (\leftrightarrow, \leftrightarrow)
- Second subband behaves differently
- Determine g-factors (using gate lever arm)

$g_1 = 39; g_{2,3} = 38$ (c.f. bulk value ~ 50)
Orbital effects of B-field

- Orbital effects depend on direction of magnetic field
- Simulate [1] the effect of in-plane and out-of plane B-field on subband dispersion
- Include spin-orbit interaction
- E_2 and E_3 increase until the spin down branches cross
 - Crossing not observed in experiment \rightarrow would correspond to a jump by G_0

Effect of out plane B-field

Perpendicular to the wire (along z direction):
- 0.5, 1G₀ plateaus visible
- 1.5G₀ plateau not visible but 2.5G₀
Effect of out plane B-field

Perpendicular to the wire (along x direction):
• 0.5G₀ plateau from B~0.6T
• Jump from 1 to 2G₀
• 1.5G₀ plateau not visible, 3G₀ slightly visible
Effect of in plane B-field parallel to the wire along (y direction)

- Bands split at $B \sim 0.75T$ into 4 subbands
- Agrees better with simulations
- Almost no orbital effects!
Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts

S. Heedt,*,† W. Prost,‡ J. Schubert,† D. Grützmacher,† and Th. Schäpers*,†

†Peter Grünberg Institut (PGI-9) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
‡Solid State Electronics Department, University of Duisburg-Essen, 47057 Duisburg, Germany
InAs NW (d~100nm)
- high-k dielectric (100nm thick)
- gates 180nm wide and 30nm spacing
- field effect measurements:
 - $\mu=25000\text{cm}^2/\text{Vs}$
 - $n_{3D}=1\times10^{17}\text{cm}^{-3}$
 - $l_e=250\text{nm}$
Conductance quantization

- splitting of subbands upon applying B-field
- no degeneracy of 2nd and 3rd subband
DC bias spectroscopy

- At small DC bias resonances \rightarrow Fabry-Perot interferences \rightarrow derive effective channel length (~ 210nm)
- Determine g-factors
 - $|g| \sim 7$ for 1st subband (bulk ~ 15)
 - g factor decreases with subband index
 - close to pinch off \rightarrow stronger confinement \rightarrow increase of exchange interaction
Conclusion

- Conductance quantization at B=0 in ballistic InAs and InSb NW
 - Using high-k dielectrics (hBN and LaLuO$_3$)
- Kammhuber et al.
 - investigated subbands
 - degenerate due to confinement of NW
 - spin degeneracy lifted with magnetic field \rightarrow depends on direction due to orbital effects
 - difference between data and simulation \rightarrow SOI modification due to gating and/or change of confinement ?
- Heedt et al.
 - g factor varies with subband index due to confinement
 - observe Fabry-Perot interference
 - 0.7 Anomaly present at elevated temperatures \rightarrow further investigation