Antilocalization of Coulomb Blockade in a Ge/Si Nanowire

A. P. Higginbotham,1,2 F. Kuemmeth,1 T. W. Larsen,1 M. Fitzpatrick,1,3 J. Yao,4 H. Yan,4 C. M. Lieber,4,5 and C. M. Marcus1

1Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Department of Physics, Middlebury College, Middlebury, Vermont 05753, USA
4Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
5School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 12 January 2014; published 29 May 2014)
Motivation

• Spin Qubits
 – Electric field to magnetic field conversion (EDSR)

• Majorana Physics, proposed ingredients
 – (strong) Spin-Orbit Coupling
 – Superconductivity

Mourik et al. Science, 2012
Antilocalization Introduction

- Coherent backscattering → quantum interference effects
- Absence of Spin-Orbit → Weak localization, lifted by B-Field
- Strong Spin-Orbit → Antilocalization, lifted by B-Field
- Relevant length scales: $l, l_{SO} < l_\varphi$

Antilocalization in low D

1D: $l_{SO} \sim 20$ nm

Hao et al. Nanoletters, 2010

Zumbühl et al. PRL, 2002

$\epsilon_{SO} > \Delta$, smaller for bigger dots

Antilocalization has been observed in Ge/Si Nanowires, and in 0D, why bother?

→ Effects of Coulomb Blockade!
Coulomb Blockade

\[\Gamma \ll kT \ll \Delta \ll \frac{e^2}{C} \]

\[g \sim \frac{e^2}{h} \frac{\gamma}{4kT} \cosh^{-2} \left(\frac{\epsilon}{2kT} \right) \]

\[g_p \sim \frac{1}{kT} \]

FWHM of peak \(\sim \) 3.5kT

\[\gamma = \frac{\Gamma L \Gamma R}{\Gamma L + \Gamma R} \]

different for different levels!

Folk et al. PRL, 1996

Van Houten et al. Single Charge Tunneling, 1992
Coulomb Peak Statistics

- g_{max} depends on coupling of the dot to the leads for every level.

- Random Matrix Theory (RMT) can describe the distribution of peak heights based on symmetries of wavefunctions.

$g_{\text{max}} = \frac{e^2}{h} \frac{\pi}{2kT} \frac{\Gamma_l \Gamma_r}{\Gamma_l + \Gamma_r} \equiv \frac{e^2}{h} \frac{\pi \bar{\Gamma}}{2kT} \alpha,$

$P_{(B=0)}(\alpha) = \sqrt{\frac{2}{\pi \alpha}} e^{-2\alpha},$

$P_{(B\neq0)}(\alpha) = 4\alpha [K_0(2\alpha) + K_1(2\alpha)] e^{-2\alpha}.$

Increased mean height of peaks at high field

Folk et al. PRL, 1996
RMT of strong SO Coupling

\[\beta = 0: \text{No SO, time-reversal symmetry} \]
\[\beta = 1: \text{time-reversal symmetry broken} \]
\[\beta = 2: \text{broken spin rotation symmetry} \]

Introduce additional parameters because of Zeeman splitting and SO:

- \(s \) for Kramers degeneracy; \(s = 1 \) or \(s = 2 \)
- \(\Sigma \) for mixing of spin levels; \(\Sigma = 1 \) or \(\Sigma = 2 \)

\[g_p = \frac{2e^2}{\hbar} \frac{\chi_s}{kT} \frac{\Gamma_l \Gamma_r}{\Gamma_l + \Gamma_r} = \frac{e^2}{\hbar} \frac{\tilde{\Gamma}}{2kT} \chi_s \alpha \]

\[\chi_{s=2} = 3 - 2\sqrt{2} \quad \chi_{s=1} = 1/8 \]

For weak SO, \(B = 0 \):

\[P_{\beta=1,\Sigma=1,s=2}(\alpha) = \sqrt{\frac{1}{\pi \alpha}} e^{-\alpha}, \quad \tilde{\alpha} = 1/2 \]

For strong SO, \(B = 0 \):

\[P_{\beta=4,\Sigma=1,s=2}(\alpha) = 16\alpha^3 e^{-2\alpha} \left[K_0(2\alpha) + \left(1 + \frac{1}{4\alpha}\right) K_1(2\alpha) \right], \quad \tilde{\alpha} = 4/5 \]

Equal to high field of weak SO

\[P_{\beta=2,\Sigma=2,s=1}(\alpha) = P_{\beta=4,\Sigma=1,s=2}(\alpha) \quad \rightarrow \text{just scaling of strong SO case at high field} \]

Ahmadian et al. PRB, 2006
Device: Ge/Si Nanowire

- Core/Shell nanowire: 10 nm Ge core, 2 nm Si shell. \(\rightarrow \) hole gas
- Pre-patterned bottom gates
- Contacts after deposition of wire
- \(T \sim 100 \text{ mK}, V_{AC} \sim 100 \mu \text{V} \)
- Operable in both open \((N_H \sim 1700) \) and blockated regime \((N_H \sim 600) \)
- Elastic scattering length: 35-50 nm
- \(\mu \sim 800 \text{ cm}^2/\text{Vs} \); 4-6 modes occupied

Lu et al. PNAS, 2005
Temperature dependence

- Simple model: At $T\sim\Delta$ transport trough multiple levels:
 → suppression of fluctuations

- Deviation at high T from theory due to correlations of the 50 neighbouring peaks?
Both the decreasing average peak height with B-field and distribution at B=0 are signatures of strong spin-orbit coupling.

Scaling factor between B=0T and B=6T distributions is larger than expected.
Open regime

- Magnetoconductance in open regime shows antilocalization
- Depending on the boundary scattering (diffusive or specular) fits can change.
- $l_e < 10 \mu m$
- $l_\varphi = 0.2-1.2 \mu m$
- $l_{SO} < 20 \text{ nm}$
- From dot AL

$$\epsilon_{SO} > \Delta \quad \epsilon_{SO} = \hbar^2 / (2m^* l_{SO}^2)$$

$$l_{SO} < 25 \text{ nm}$$
Conclusion

- Coulomb Peak height distribution and field dependence consistent with strong SO coupling in Ge/Si nanowires
- Magnitude of antilocalization larger than expected
- Results confirmed in the open regime
- Spin-Orbit length on the order of tens of nanometer