Long-distance coherent coupling in a quantum dot array

F. R. Braakman¹, P. Barthelemy¹, C. Reich², W. Wegscheider² and L. M. K. Vandersypen¹*

FMM-Talk
March 7th 2014
Outline

• Motivation/Idea
• Sample/Methods
• Charge stability diagram
• Transport through triple QD via co-tunneling
• Coherent tunneling
• Summary and outlook
Motivation/Idea

- Charge and Spin in QD to implement qubits
- For quantum logic gate one needs coherent transport and manipulation of qubits over large distance:
 - SWAP operations (difficult)
 - Quantum bus (trapped ions and superconducting qubits)

Idea:

Exponential decay of tunnel coupling in QD \rightarrow quantum bus in QD:

- use cotunneling to achieve long distance coupling
- process possible since $\Delta t = \hbar/\Delta E$
Sample/Methods

- Sensor QD (SQD) operated on flank of Coulomb peak
- Measurement of I_{SQD} via radiofrequency reflectometry (RRF) and in D.C mode
 - Apply an RF signal
 - Reflected signal is modulated depending on the resistance of the device
 - High sensitivity and high bandwidth, circumvents the high capacitance and resistance between RT electronics and cryostat.
- Dots in few electron regime
- Tunnel rates to leads ~ 100 Hz; between dots >100 Hz
Charge stability diagram

- Time averaged differential D.C. conductance
- Numerical derivative of I_{SQD} along V_{LP}
- Independent tuning of the barriers and dots
- Opaque barriers (lower tunneling rates)
- Difference in stepsize height due to distance to SQD

(1,1,0) \rightarrow (0,1,0)

(0,1,1) \rightarrow (0,1,0) and

2x (0,1,0) \rightarrow (0,1,1)

Zero detuning between (0,1,1) and (1,1,0); tunneling between outer dots

= tunneling in

= tunneling out
Charge stability diagram

- Time averaged differential D.C. conductance
- Numerical derivative of I_{SQD} along V_{LP}
- Independent tuning of the barriers and dots
- Opaque barriers (lower tunneling rates)
- Difference in stepsize height due to distance to SQD

(1,1,0) \rightarrow (0,1,0)

(0,1,1) \rightarrow (0,1,0) and

2x (0,1,0) \rightarrow (0,1,1)

Zero detuning between (0,1,1) and (1,1,0); tunneling between outer dots

= tunneling in

= tunneling out
Evidence for outer dot transport

- Upper trace: mostly (0,1,1)
- Lower trace: mostly (1,1,0)
- Middle trace: transport between the outer dots
- δ_1 fixed at $\sim 300 \mu$eV; $\varepsilon = [49 \mu$eV, -61μeV]
- Transfer of electrons between the outer dots via cotunneling of middle dot
• Cotunneling processes via 2 path ways
• Set $\mu_L(1,1,0)=\mu_R(0,1,1)$
•Opaque barriers to leads
• $\delta_1=\mu_M(0,2,0)-\mu_R(1,1,0)$ and $\delta_2=\mu_L(1,0,1)-\mu_M(1,1,0)$; $\delta_1=f(\delta_2)$

Couplings between states:

$\mathbf{t_{l1}}$: $|110>$ and $|020>$
$\mathbf{t_{r1}}$: $|020>$ and $|011>$
$\mathbf{t_{l2}}$: $|101>$ and $|011>$
$\mathbf{t_{r2}}$: $|110>$ and $|101>$

$H = \begin{pmatrix} -\epsilon'/2 & t_{co} \\ t_{co} & \epsilon'/2 \end{pmatrix}$

$t_{co} = \frac{t_{l1}t_{r1}}{\delta_1} + \frac{t_{l2}t_{r2}}{\delta_2}$

For $t_{l1}, t_{r1}, t_{l2}, t_{r2}, \epsilon \ll \delta_1, \delta_2$

• t_{co}: co-tunnel-coupling strength
Tunnelrate

- Change $V_{MP} \sim \delta_1 \sim \delta_2$
- Mostly 2 state fluctuation
- T_2 charge dephasing time $\sim 1\text{ns}$
- Non-monotonous tunnelrate \rightarrow transfer via virtual states

\[\Gamma = \frac{2T_2}{\hbar} \left(\frac{t_{l1}^2 t_{r1}^2}{\delta_1^2} + \frac{t_{l2}^2 t_{r2}^2}{\delta_2^2} \right) \]
• Apply microwave to LP gate
• Make two detuned dot levels resonant via microwaves: \(\varepsilon_0 = n\hbar \omega \) (\(n > 1 \) ↔ multiphoton processes)
• Sidebands in CSD at L and R due to conventional PAT
 • Slopes of the sidebands at L and R such that \(\varepsilon_0 = n\hbar \omega \)
 • Slopes of the resonance at point C different \(\rightarrow \) PACT
• Investigate coherent dynamics at point C between the states \(|110\rangle \) and \(|011\rangle \) via Landauer-Zener-Stückelberg (LZS) interference
• LZS Hamiltonian (as in 2 level system) with microwave modulation at frequency \(\omega \)

\[H = \begin{pmatrix} -\epsilon'/2 - Ae^{i\omega t} & t_{co} \\ t_{co} & \epsilon'/2 + Ae^{i\omega t} \end{pmatrix} \]
Apply microwave to LP gate

Make two detuned dot levels resonant via microwaves: $\varepsilon_0 = n\hbar\omega$ (n>1 ↔ multiphoton processes)

Sidebands in CSD at L and R due to conventional PAT
 - Slopes of the sidebands at L and R such that $\varepsilon_0 = n\hbar\omega$
 - Slopes of the resonance at point C different \rightarrow PACT

Investigate coherent dynamics at point C between the states $|110\rangle$ and $|011\rangle$ via Landauer-Zener-Stückelberg (LZS) interference

LZS Hamiltonian (as in 2 level system) with microwave modulation at frequency ω

$$H = \begin{pmatrix} -\epsilon'/2 - Ae^{i\omega t} & t_{co} \\ t_{co} & \epsilon'/2 + Ae^{i\omega t} \end{pmatrix}$$
• Apply microwave to LP gate
• Make two detuned dot levels resonant via microwaves: $\varepsilon_0 = n\hbar\omega$ ($n > 1 \leftrightarrow$ multiphoton processes)
• Sidebands in CSD at L and R due to conventional PAT
 • Slopes of the sidebands at L and R such that $\varepsilon_0 = n\hbar\omega$
 • Slopes of the resonance at point C different \rightarrow PACT
• Investigate coherent dynamics at point C between the states $|110\rangle$ and $|011\rangle$ via Landauer-Zener-Stückelberg (LZS) interference
• LZS Hamiltonian (as in 2 level system) with microwave modulation at frequency ω

$$H = \begin{pmatrix} -\epsilon'/2 - Ae^{i\omega t} & t_{co} \\ t_{co} & \epsilon'/2 + Ae^{i\omega t} \end{pmatrix}$$
PACT

- Apply microwave to LP gate
- Make two detuned dot levels resonant via microwaves: \(\varepsilon_0 = n\hbar\omega \) (\(n>1 \leftrightarrow \) multiphoton processes)
- Sidebands in CSD at L and R due to conventional PAT
 - Slopes of the sidebands at L and R such that \(\varepsilon_0 = n\hbar\omega \)
 - Slopes of the resonance at point C different \(\rightarrow \) PACT
- Investigate coherent dynamics at point C between the states \(|110\rangle \) and \(|011\rangle \) via Landauer-Zener-Stückelberg (LZS) interference
- LZS Hamiltonian (as in 2 level system) with microwave modulation at frequency \(\omega \)

\[
H = \begin{pmatrix}
-\varepsilon'/2 - Ae^{i\omega t} & t_{co} \\
t_{co} & \varepsilon'/2 + Ae^{i\omega t}
\end{pmatrix}
\]
LZS interference

- Larger tunnel coupling between the neighbouring dots \rightarrow strong PACT response
- Set detuning ε_0; apply mw to LP at 15 GHz
- Modulation of detuning by mw
- States in the 2 level system evolve \rightarrow gain of phase between two passings through anticrossing during one mw period/tunable via mw power; peaks at $\varepsilon_{0n} = nh\nu$

$$\Delta \theta_{12} = \frac{1}{\hbar} \int_{t_1}^{t_2} \epsilon(t) \, dt = 2\pi n = 2\pi \varepsilon_0 / \hbar \nu$$

- Coherent oscillations between excited and ground state \rightarrow coherent co-tunneling

Contrast = occupation of excited state
Summary and Outlook

Summary:

- Observation of coherent co-tunnel coupling across a triple QD array
- Long distance coupling via co-tunneling process via virtual intermediate state
 → non monotonous tunnel rate upon detuning (theory fits experiment well)

Outlook:

- Show that spin is not affected during these oscillations → non local spin exchange
- Possible study of superexchange → understanding high temperature superconductors