Observation of Hysteretic Transport Due to Dynamic Nuclear Spin Polarization in a GaAs Lateral Double Quantum Dot

Takashi Kobayashi, Kenichi Hitachi, Satoshi Sasaki, Koji Muraki

FMM
August 17, 2012

Dario Maradan
Zumbühl Group
Motivation

- understand / control interaction between electrons and host nuclei

- small difference in B_{loc} in right and left dot affects the time evolution of the electron spins – sometimes welcome, sometimes unwelcome

- coherence time of electron spin is limited by fluctuation in B_{nuc}
Coulomb- & Pauli-Blockade, DNP

transport enhanced by fluctuations in B_{nuc}

Triplet evolves into Singlet: Pauli-Blockade can be lifted → nuclear polarization

$$\vec{B}_N = \frac{1}{g\mu_B} \sum_{i}^{n} A_i \vec{I}_i$$

statistical fluctuations, random direction: $$\|\vec{B}_N\| = \frac{B_{\text{pol}}}{\sqrt{n_{\text{nuc}}}}$$

Koppens et al., Science 309, 1346 (2005)
Similar things seen before ...

- lateral DQD, direct transport
- **resonant** current is hysteretic in the sweep direction

- 13C nanotube DQD
- net nuclear polarization induced by electron spin flips

 H.O.H Churchill et al., Nat Phys **5** (2009)

- vertical DQD
- attributed to $T_+ - S_U$ mixing at positive detuning

Sample

- 2DEG: 80 nm deep
- \(n = 2.2 \cdot 10^{11} \text{ cm}^{-2} \)
- \(\mu = 2 \cdot 10^6 \text{ cm}^2/\text{Vs} \)
- \(V_{sd} = -800 \ \mu \text{V} \)
- inter-dot tunnel coupling \(t : V_C \)
- in-plane magnetic field \(B_\parallel \)
- (asymmetric) QPC to read-out \((m,n)\)
Bias triangles and relevant states

- $(1,1)$-$(2,0)$ transition
- negative bias
- CB at negative detuning
- suppression of I_{dot} at positive detuning \rightarrow Pauli blockade

upper right: $(1,1)$-$(2,0)$-$(2,1)$-$(1,1)$
lower left: $(1,1)$-$(2,0)$-$(1,0)$-$(1,1)$

\rightarrow both sequential tunnel processes are blocked once a triplet state is occupied
Hysteretic features

top: leak currents at $B = 0$ and $\varepsilon = 0$ originate from NS-mediated processes (T-S crossing). Only small contributions of NS-free processes.

observed hysteretic behavior at large negative ε suggests DNP (by flip-flop)

calculated position of the $T_+ - S_L$ crossing (see (b)):

$$2|g^*|\mu_B(B_\parallel - B_0) = \sqrt{8t^2 + \varepsilon^2 + \varepsilon}$$
Proposed model

$T_+ - S_L$ crossing has been previously observed but not in DC transport in the CB regime ($\varepsilon < 0$), which prohibits the charge transfer from (1,1) to (2,0).

Further, I_{dot} increases with $B_{\|}$.

Model: CB is lifted by making the transition from (1,1) to (1,0) through S_L, without (2,0)S.

S_L has a finite (2,0)S component at $\varepsilon < 0$ for finite t, given by $c(t,\varepsilon)$. DNP generates imbalance in the NS polarization between left and right dot and therewith enhances I_{dot} \rightarrow positive feedback.
More data

- DNP visible for \(V_C >= -1.21 \text{ V} \)
- \(V_C \) more positive \(\rightarrow \) \(t \) larger \(\rightarrow \) DNP better visible / on a larger range of detuning

\[
c(t, \varepsilon) \equiv |\langle (2, 0) S | S_L \rangle|^2 = \frac{1 + (\varepsilon/t)/ \sqrt{(\varepsilon/t)^2 + 8}}{2}
\]
new hysteretic transport feature observed in the CB regime – attributed to DNP due to $T_+^{-}-S_L$ crossing, explained by a model where T_0 has a finite $(2,0)S$ component at $\Delta B_N^Z \neq 0$. Spin-Blockade is lifted.

strong imbalance between the B_{nuc} in the left and right dot.