Field Tuning the g Factor in InAs Nanowire Double Quantum Dots

M. D. Schroer, K. D. Petersson, M. Jung, and J. R. Petta

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
(Received 7 May 2011; published 19 October 2011)

We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control.
Motivation

- Spin qubits: Fast control of single electron spins
 - ESR: Spin rotation via B_{RF} pulses

Motivation

- Spin qubits: Fast control of single electron spins
 - EDSR: Electric dipole spin resonance via E_{RF}, mediated by
 - Hyperfine interactions to nuclei (Overhauser field)
 - Spin-Orbit fields B_{SO}
 - Local B-field gradients (nanomagnets)
 - Simpler setup/device design
 - Experiments done in GaAs1, but rotations too slow

 \textup{1}K. C. Nowack et al., Science 318, 1430 2007
InAs Nanowire DQD

- InAs nanowire (d=50 nm) deposited onto:
 - Silicon substrate
 - Ti/Au gates, spaced 60 nm
 - Ti/Au sidegates
 - 20 nm SiNₓ isolation layer
- Ohmic contacts
DQD Stability Diagram

- $(1, 1) \leftrightarrow (2, 0)$ transition
 - Positive bias (+4mV)

(1, 0) → (2, 0) → (1, 1) → (1, 0)
(1, 1) ↔ (2, 0) transition

- Negative bias (-4mV)

- Small "leakage current" due to
 - Spin flips
 - cotunneling
EDSR Measurements

- For $B=0$: hyperfine mediated spin flips

- For finite B: resonance peaks for $hf = g\mu_B|B|
 - One for each QD (different g-factor)
- $B=80\text{mT}$, rotating field direction
- g-factor varies spatially
 - as a function of external B-direction
 - between QDs
- Resonance intensity also shows angle dependence

\[
B_{so}(t) = 2B \times (\Omega_0 \sin \omega_{ac} t)
\]

\[
I_{EDSR} = \frac{e\Gamma_i |B_{so}|^2}{2B^2_N}
\]
g-factor Anisotropy

- Lower values compared to bulk (14.7)
- Cylindrical anisotropy
- Not aligned to nanowire axis
g-factor Anisotropy

- Same measurements for “unbalanced” case:
 - Change in confinement potential
 - Indicator: coupling to leads
 - Asymmetric cotunneling peak in the leakage current
 - Influence on g-factor mainly in one QD due to change in confinement potential

| Dot | $|g_1|$ | $|g_2|$ | $|g_3|$ | α | β | γ |
|-----|-------|-------|-------|--------|--------|--------|
| Balanced | A | 9.1 | 7.8 | 7.5 | 1.9 | 2.1 | -0.25 |
| | B | 8.4 | 7.3 | 7.0 | -0.81 | 1.0 | 1.5 |
| Unbalanced | A | 22 | 12 | 8.0 | 1.8 | 1.9 | -0.21 |
| | B | 8.8 | 7.6 | 7.4 | -1.2 | 1.0 | 0.73 |
Quantitative Analysis

- g-factor
 - in bulk: 14.7
 - in QDs: 7.4 – 22, highly anisotropic

- SOI strength
 - from $l_{\text{EDSR}} = \frac{e\Gamma_i|B_{so}|^2}{2B_N^2}$, with $\Gamma = 220\text{MHz}$ and $B_N = 3\text{mT}$
 $\rightarrow B_{so} \approx 1\text{mT}$
 - and from $l_{so} = \frac{B}{B_{so}} \frac{2\hbar^2e|E|}{m_e\Delta^2}$
 $\rightarrow l_{so} \approx 170\text{nm}$
Summary

- Spin sensitive measurements in Pauli blockade regime
- EDSR-induced spin rotations measured in (3d) rotating B-field
 - Spatial variations of g-factor
 - Anisotropy highly correlated to confinement potential of applied E-fields rather than 1d-structure of nanowire

- Quantitative Analysis:
 - $B_{SO} \approx 1\text{mT}$
 - $B_N \approx 3\text{mT}$
 - $l_{SO} \approx 170\text{nm}$

- Large g-factor differences for each QD in DQD allows fast and selective single spin rotations