Mechanical cleaning of graphene

A.M.Goossens, V.E.Calado, A.Barreiro, K.Watanabe, T.Taniguchi, L.M.K. Vandersypen

FMM, 9.12.2011, Dorothée Hug
Influence of substrate on graphene properties

\[\mu = \frac{1}{n \rho_{xx}} \sim 28,000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \]

\[n = 2 \times 10^{11} \text{ cm}^{-2} \]

\[\mu = 230,000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \]
Boron nitride and graphene

- Band gap: 5.97eV (SiO₂ : 8.9eV)
- Dielectric const ε: 3-4 (SiO₂ ε: 3.9)
- Lattice mismatch with graphene: 1.7%
- Inplane covalent bonds → less dangling bonds
Graphene transfer on hBN

- Exfoliation of hBN onto SiO2 wafer
- Exfoliation of graphene onto a PMMA-watersoluble layer on SiO2
- Lifting PMMA layer off the SiO2 layer in H2O
- Transfering graphene onto hBN flake on SiO2
- Lift off of PMMA in acetone

Mechanical cleaning of graphene sheets

- Cleaning in annealing oven: 400°C in Ar/H₂
- Cr/Au contacts fabricated with e-beam
- Again annealing in oven: 300-440°C
- Contact mode AFM
- Roughness
 - before processing: 0.2nm
 - after processing: 1nm
 - after CM AFM: 0.2nm
Back gate dependence

\[\mu = \left(\frac{t_{SiO_2}}{\epsilon_0 \epsilon_r, SiO_2} + \frac{t_{hBN}}{\epsilon_0 \epsilon_r, hBN} \right) \frac{d\sigma}{dV} \]

- Before CM AFM:
 - \(V_{pn} = 4V \rightarrow 20V \)
 - \(\mu = 2.6 \cdot 10^2 - 3.4 \cdot 10^3 \text{cm}^2/(\text{Vs}) \)
- After CM AFM:
 - \(V_{pn} = -7V - 1V \)
 - \(\mu = 9.2 \cdot 10^2 - 8.9 \cdot 10^3 \text{cm}^2/(\text{Vs}) \)
Top gated bilayer graphene device

\[\mu = 36000 \text{cm}^2/(\text{V} \cdot \text{S}) \]
SLG in H2-plasma

- Graphene deposition
- Annealing at 300°C, 1hr and 400°C, 1hr
- Patterning holes with e-beam
- AFM: PMMA residues
- 5min H₂ plasma
 - 50Watt
 - 0.03mbar
 - 500°C
- AFM: less residues than before

23/12/2011
Influence of H$_2$ plasma on graphene

G peak

2D peak

Raman of graphene

G peak

D peak

2D peak

D+D^* peak

Raman of DHVIII_8678

23/12/2011

M.S. Dresselhaus, Raman spectroscopy of carbon nanotubes
Hydrogenation of graphene: graphane

Science, 323, 610 (2009)

Science, 323, 589 (2009)
Conclusion

• Boron/nitride less disordered than SiO$_2$
• CM AFM using low forces clean graphene surfaces
• moderate mobilities for bilayer graphene
• Plasma etching could also be used as a cleaning method