Relaxation and Readout Visibility of a Singlet-Triplet Qubit in an Overhauser Field Gradient

Martin Brühlmann

University of Basel

December 2, 2011
Observation: DNP reduces Overhauser field gradients and induces net polarization.

This paper shows

- DNP enhances Overhauser field gradients (ΔB_z) and induces net polarization

- ΔB_z leads to a mixing of $S(1,1)$ and $T_0(1,1)$

- influence of increased ΔB_z and measurement detuning on
 - qubit readout Visibility
 - T_1
GaAs/Al$_{0.3}$Ga$_{0.7}$As, 2DEG 100nm below

- electron density: $2 \times 10^{15} m^{-2}$
- mobility $20 \frac{m^2}{Vs}$
- $B_{ext} = 200mT$
- reflectometry measurement with SQD
Energy level diagram

(a) (0,2)S

(b) (0,2)T

\[\begin{align*}
(0,2)T_+ & \to (0,2)T_0 \to (0,2)T_+ \\
S & \to T_0 \\
T_+ & \to \text{fast} \\
\text{slow} & \to \text{diabatic} \\
\tau_R \to 0 & \to \text{adiabatic}
\end{align*} \]
Pumping Cycle
Probe Cycle

\[(0,2)S \rightarrow T_0 \rightarrow S \]

\[S \rightarrow T_0 \rightarrow S \]

\[(0,2)T_+ \rightarrow (0,2)T_0 \rightarrow (0,2)T_+ \]

\[\Gamma_T \ll \Gamma_S \]
Measurements

- P_s: Probability of a singlet after probe cycle
- Δt: time between pump- and probe cycle
- τ_s: mixing/precession time
- f_s: frequency
- ΔB_z: nuclear field differences
- V: Visibility
Measurements

- $\langle v_{rf} \rangle$: averaged output voltage of SQD
- t: measurement time
- T_1: Triplet relaxation times
- ΔB_z: nuclear field differences
- ϵ: detuning (of measurement)
- V: Visibility
Measurements

- V: Visibility
- ΔB_z: nuclear field differences
- T_1: Triplet relaxation times
- **V: Visibility**
- **ΔB_z: nuclear field differences**
- **T_1: Triplet relaxation times**
- **V_R: ramp-time-dependent factor of V, here V/V_T**
- **τ_R: ramp time**
- **τ_R^{-1}: ramp rate**
- **$B_{90\%}: \Delta B_z$, where $V_R = 0.9$**
• Overhauser field gradients (ΔB_z) can be increased by electron-nuclear spin pumping

• ΔB_z leads to a mixing of $S(1,1)$ and $T_0(1,1)$

• The different Visibilities and T_1:
 - decrease with increasing ΔB_z
 - decrease slower on ΔB_z with larger measurement detuning ε_M
 - are independent on the external magnetic field

• T_1 is independent on the ramp-time

• V decreases faster with longer ramp-time