Direct Observation of Nonequilibrium Spin Population in Quasi-One-Dimensional Nanostructures

Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
van Houten et. al. RPL 1988

Charge detector
Luscher et. al. PRL 2007

Rejec and Meir, Nature 2006

QPC Microscopy
Zhang et. al. Nano Lett. 2011
Outline

- Basic transport of QPC
- ac Conductance ($G_{ac}=dI/dV_{sd}$) vs dc Conductance ($G_{dc}=I/V_{sd}$)
- Observation of nonequilibrium spin population
- summary
Basic transport of QPC

\[G = \frac{2e^2}{h} \sum T_n(E_F) = \frac{2e^2}{h} \sum \frac{1}{1 + e^{-\beta_n|E_F - E_n|}}, \]

\[\beta_n = \sqrt{\frac{2m^*}{\alpha \hbar^2 E_n}}. \]

(e.g. Ferry and Goodnick, Cambridge University Press, 1997)
Basic transport of QPC

\[G = \frac{2e^2}{h} \left(\frac{1}{a} \sum_{n} \frac{1}{1 + e^{-\beta_n [\mu_L - e(\phi_0 - V_{ds}/a) - \varepsilon_n]}} - \left(\frac{1}{a} - 1 \right) \sum_{n} \frac{1}{1 + e^{-\beta_n [\mu_R - e(\phi_0 - V_{ds}/a) - \varepsilon_n]}} \right) \]
ac Conductance vs dc Conductance

\[G_{ac} = 2e^2/h \]
\[G_{dc} = 2e^2/h \]

- **Plateau in** \(G_{dc; ac} \) **when** \(E_n \) **lies below both** \(\mu_s \) **and** \(\mu_d \)

\[G_{ac} = 0.5(2e^2/h) \]
\[G_{dc} = 2e^2/h(\Delta E/eV_{sd}) \]

- \(G_{ac} \) **rises sharply by** \(0.5(2e^2/h) \) **when** \(E_n \) **passes** \(\mu_s \) **or** \(\mu_d \)
- \(G_{dc} \) **rises continuously with the** \(E_n \) **filling:** \(I = (2e^2/h)[\Delta E/e] \) (no plateau!)

Chen et al. APL 2008
Device information

- GaAs/Al$_{0.33}$Ga$_{0.67}$As / 96 nm below
- Mobility: 3.97×10^6 cm2/V s
- Electron density: 3.37×10^{11} cm$^{-2}$
- ac excitation: 5 µV
- $T \sim 130$ mK
- $B \sim 14$ T

W: 0.8 microns
L: 0.3 ~ 1 microns
At zero bias, \(G_{ac} = 0.5(e^2/h) \) at 8 T (fully spin-polarized).

At \(V_{sd} = 0.5 \) mV, \(G_{dc} \) (partially-spin polarized)

\[
P_{1D} = \frac{n_{\downarrow} - n_{\uparrow}}{n_{\downarrow} + n_{\uparrow}} < 1
\]
• e\(V_{sd}\) > \(E_n\) spacing: NO Plateau in \(G_{dc}\)
• Shoulderlike feature in \(G_{dc}\)
• Anomalies become more announced at \(B=12\) T
High transconductance
\(\frac{dG_{ac}}{dV_g} \):
\(E_n \) pass through \(\mu_s \) or \(\mu_d \)

\(E_n \) configuration

0.85 subband

\(G_{dc} \) has a plateau even an \(E_n \) lies between \(\mu_s \) and \(\mu_d \). **Unusual!**
\[G_{dc} = \frac{e^2}{h}[1 + \Delta E / eV_{sd}] \]

\[eV_{sd} - \Delta E = (2 - G_{dc} / G'_0) \times eV_{sd} \]

\[G'_0 = \frac{e^2}{h} \]
Summary

• dc conductance feature directly related to a nonequilibrium spin population behavior. \(G_{ac} \sim 0.85(2e^2/h) \).

• the population of the minority up-spins and the spontaneous spin polarization changes as a function of B and \(V_{bias} \).

• providing a key to a more complete understanding of Coulomb and exchange interactions and the 0.7 anomaly in quasi-1D systems; a fully electrical method for creation and manipulation of spin-polarized currents.