Impact of Disorder on the 5/2 Fractional Quantum Hall State

W. Pan,1 N. Masuhara,2 N. S. Sullivan,2 K. W. Baldwin,3 K. W. West,3 L. N. Pfeiffer,3 and D. C. Tsui3

1Sandia National Labs, Albuquerque, New Mexico 87185, USA
2University of Florida and National High Magnetic Field Laboratory, Gainesville, Florida 32611, USA
3Princeton University, Princeton, New Jersey 08544, USA

(Received 8 October 2010; published 18 May 2011)

Friday Morning Meeting

22 July 2011

Lucas Casparis
Motivation

• Find a high as possible energy gap for the fractional 5/2 state
 – Discrepancy of 2 K between calculations and achieved gaps → attributed to “disorder broadening”
 – Try new systems

• Important role of disorder
 – MIT in GaAs
 – Quantum Hall effect: plateau-to-plateau transition
 – Fractional Quantum Hall States
Scaling of Plateau to Plateau Transition

- PPT is a localization delocalization transition
- Following the idea of a quantum phase transition and a finite scaling theory

\[R_{uv} = R_{uv} \frac{L}{\xi} \]

\[\xi \propto |B - B_c|^{-\nu} \]

\[L_{\phi} \propto T^{-\frac{p}{2}} \]

\[\frac{dR_{xy}}{dB} \propto T^{-\kappa} \]

\[\kappa = \frac{p}{2\nu} \]

Li et al. PRL 102, 216801 2009
Non universal behaviour

4-3 Transition
At base bath temperature $T_B=1\text{mK}$

Sample width: 100μm, 500μm
Sample length: width = 4.5:2.5

$\kappa = 0.42$

$T_s \sim W^{-1}$

$Al_{0.62}Ga_{0.38}As-Al_{0.8}Ga_{0.22}As$
with $x=0.85%$

4-3 Transition
Impact of Disorder

- Localization length depends on disorder
 → for short range disorder:
 \[\kappa = 0.42 \]

 → for long range disorder: non universal behaviour,
 (possible transition to at low T)

Li et al. PRB 81, 033350 2010

Li et al. PRL 94, 206807 2005
HIGFET

- No Doping, no ionized impurities → no long range disorder
- Surface roughness → short range disorder

Energy gap measurement

- Gate voltage is swept
- R_{xx} shows activated behavior
- Gap increases with density, but is not dependent on mobility
Density dependence of gap

Spin polarized ground state fit:

\[\Delta = \frac{\alpha e^2}{\epsilon l_b} - \Gamma \]

Unpolarized ground state gives worse fit:

\[\Delta = \frac{\alpha e^2}{\epsilon l_b} - \Gamma - g^* \mu_b B \]

Normalize gap with e⁻-e⁻ interaction:

\[\frac{e^2}{\epsilon l_b} \]

Gamez et al. arXiv:1101.5856
Comparison to Quantum Wells

• Long range disorder in quantum wells

• Short range disorder in HIGFET

• $1/\mu$ is a rough measure of disorder

• HIGFET Gap is not dependent on disorder
Possible Mechanisms

• Attraction between ionized donors and 2D electrons affects composite fermion pairing

• Size of quasiparticles about 0.1 µm
 → Subnanometer surface roughness has no effect

• GS Deformation around impurities, i.e. e⁻ puddles
 → Rotons are being excited
 → Energy gap is affected by rotons
 → Puddle size determines gap size
Conclusion

• In HIGFET devices the gap is not mobility dependent

• Different disorders play different roles

• Density dependent result of the gap is more consistent with a spin polarized ground state