Gate-dependent spin–orbit coupling in multielectron carbon nanotubes

T. S. Jespersen1*†, K. Grove-Rasmussen1,2*†, J. Paaske1, K. Muraki2, T. Fujisawa3, J. Nygård1 and K. Flensberg1

1Niels Bohr Institute & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; 2NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan; 3Research Center for Low Temperature Physics, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan. *These authors contributed equally to this work. †E-mail: tsand@fys.ku.dk; k_grove@fys.ku.dk.
Spin-orbit coupling in CNTs

• curvature of graphene lattice \rightarrow radial electric field \rightarrow parallel or antiparallel orientation of spin and orbital momentum is favored (depending on sign of spin-orbit splitting Δ_{SO}).

• $g_{\text{orb}} > g_{\text{electron}}$

• spin-orbit splitting Δ_{SO} (as seen in perpendicular field) is given by the underlying structure:
 – carbon (atomic): ~ 8 meV
 – graphene: ~ 1 μeV
 – nanotube: greatly enhanced due to coupling between π and σ bands

Kuemmeth et al., Nature 452 (2008)
Sample fabrication

- highly doped Si, capped with 500 nm SiO$_2$
- nanotubes are single-wall (CVD grown: H$_2$, Ar, CH$_4$)
- e-beam: Au/Pd (40/10 nm) electrodes spaced by 400 nm
- Attocube ANRv51 piezo rotator
- 3He/4He dilution refrigerator with $T_{\text{base}} \sim 100$ mK
Coulomb diamonds: Four-electron shells

• factor 2 from electron spin
• factor 2 from isospin \((K, K')\) – \(e^-\) going around clockwise and anticlockwise
Nanotube energy spectrum (theory)

- (a) Zeeman splitting proportional to B and g_{electron}: B_{\parallel} couples to orbital magnetic moment: $g_{\text{orb}} > g_{\text{electron}}$.
- (b) $\Delta_{KK} \rightarrow$ “avoided crossing” at $B = 0$
- (c) B_{perp} does not couple K and K': “Kramer doublets” do not split
- (d) Asymmetric splitting of α, β vs γ, δ in B_{\parallel}. Zeeman splitting is suppressed in B_{perp} by Δ_{SO}.

Kuemmeth et al., Nature 452 (2008)

$\Delta_{SO} \neq 0$

\begin{align*}
\Delta_{K} & = 0 \\
\Delta_{SO} & = 0
\end{align*}

$\Delta_{K} > 0$

$\Delta_{SO} > 0$

Δ_{SO} / Δ_{K}

$E_{\uparrow} - E_{\downarrow}$

\[E_{\uparrow}^{K} - E_{\downarrow}^{K} \]
Cotunneling spectroscopy

- (a) B=0, ~180 electrons. Arrows point at horizontal lines truncating the diamonds, arising from significant cotunneling due to strong tunnel coupling
- (b) find inelastic cotunneling processes by varying V_{sd}
- (c) scale bar: $0.1e^2/h$

→ By taking the derivative of the lines in (c), one can make the states visible (large change in dl/dV points at resonant cotunneling process)
Cotunneling spectroscopy

- (f) ground state transition at $B_{||} = 1.1$ T: zero-bias Kondo peak (inset)
- Δ_{SO} is directly expressed by avoided crossings in g-i.
Tuning Δ_{SO} with V_g

- Valence band (holes)
- Conduction band (electrons)

Δ_{SO} (meV)

V_g (V)
Conclusion

- nice Coulomb diamonds in a CNT multielectron QD
- cotunneling spectroscopy in parallel and perpendicular magnetic fields
- theoretical model that explains and matches the measured band structures very well
- attempt to find a V_g-dependence of the spin-orbit coupling, measured for electrons and holes
Valid here for the valence band! For the conduction band, the signs are opposite. So, as shown in figure 2d, here $\Delta_{SO} > 0$.

Additional figures