Density of states and zero landau level probed through capacitance of graphene

PRL 105, 136801, 2010

FMM 01.04.2011, Dorothee Hug
Graphene density fluctuations

M. Wilson, Physics Today, 21, 2006

08.04.2011 J. Martin, doi:10.1038/nphys781, 2007
Landau levels in graphene

- Resistivity:
 \[\rho_{xx} = R_{xx} \frac{W}{L} \]
- Density:
 \[n = \frac{B}{e \cdot \rho_{xx}} \]
- Mobility:
 \[\mu = \frac{\sigma_{xx}}{n \cdot e} \]

Measuring the quantum capacitance

- Total capacitance:
 \[\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{q}} \]
- \(C_{ox} \) independent of \(V_g \)
- \(C_{q} = e^2 D = e^2 \frac{dn}{dE} \)
Sample fabrication

- Exfoliation of graphene
- High resistive Si-wafer
- Ti/Au contacts
- 1nm Al deposition (1Å/s)
- Oxidation with O₂ at 0.1mbar
- 100nm Al deposition
- \(\mu = 10000 \text{cm}^2/\text{Vs} \)
Capacitance at B=0

\[\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_q} \]

\[C_q = e^2 D = e^2 \frac{dn}{dE} \]

\[D \propto \frac{1}{v_F} \]

Magnetocapacitance oscillations measurements:
B-field const., sweeping Vg.
\[\Delta n = \frac{4eB}{\hbar} \rightarrow C = \frac{e\Delta n}{\Delta V_g} \]
Integrated capacitance data

![Graph showing capacitance data vs. Fermi energy](image)
Capacitance at $B=16T$

Graph a

- $C_Q (\mu F/cm^2)$ vs. $V_g (V)$
- $B = 16T$: 20 K, 60 K, 100 K, 150 K, 250 K
- $B = 0$: 20 K

Graph b

- $C_Q (\mu F/cm^2)$ vs. $n (10^{12} cm^{-2})$
Zero LL measurements

\[D_i(T) = \frac{\Delta n}{\pi} \int_0^\infty e^{-\Gamma_0 t} \cos(E_i t) \frac{\pi T t}{\sinh(\pi T t)} dt \]
Conclusion

• Measurements of graphene’s capacitance give another approach for investigations of quantization phenomena in graphene

• Quantum capacitance of graphene has been measured and compared with theoretical values

• 0LL was shown to be robust against scatterers and temperature

• Broadening of the LL with respect to B and T were measured
Density of states in graphene

- Resistivity:
 \[\rho_{xx} = R_{xx} \frac{W}{L} \]

- Density:
 \[n = \frac{B}{e \cdot \rho_{xx}} \]

- Mobility:
 \[\mu = \frac{\sigma_{xx}}{n \cdot e} \]

- Quantum Capacitance:
 \[C_q = e^2 D = e^2 \frac{dn}{dE} \]