Rippled Graphene in an In-Plane Magnetic Field: Effects of a Random Vector Potential

Mark B. Lundeberg* and Joshua A. Folk

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
(Received 27 October 2009; published 30 September 2010)

We report measurements of the effects of a random vector potential generated by applying an in-plane magnetic field to a graphene flake. Magnetic flux through the ripples cause orbital effects. Phase-coherent weak localization is suppressed, while quasirandom Lorentz forces lead to anisotropic magnetoresistance. Distinct signatures of these two effects enable the ripple size to be characterized.
Spin-resolved quantum interference in graphene

Mark B. Lundeberg* and Joshua A. Folk
WL in graphene

- Graphene: Dirac carriers with **chirality**
 - intrinsic: weak antilocalization (Berry’s phase of π !)

- weak localization: for broken valley symmetry
 - by trigonal warping
 - by atomically sharp disorder (e.g. voids, sample edges)
 - SO interaction

- rippled Graphene in B-field
- random vector potential due to local misalignment

- $\delta B_\perp \sim B_\parallel Z/R$ induces local Aharonoc-Bohm phases
 - suppression of WL at a rate

 $$\tau^{-1} \rightarrow B_\parallel^2 Z^2 R$$

[Mathur and Baranger; PRB, 64, 235325 (2001)]

[Physics Procedia, 3, 1249 (2010)]
devices and setup

- device:
 - flakes exfoliated onto Si/SiO$_2$
 - SiO$_2$ etched down to 260nm in CF$_4$/O$_2$
 - e-beam for Cr/Au contacts
 - $V_D = 1 – 23$ Volt (Si-backgate)
 - depending on cooldown
 - and current path (!)
 - QHE: single layer graphene

- setup:
 - fridge ~ 10 mK ($T_e = 40$ mK)
 - 2-axis magnet ($B_{||} = 12$ T ; $B_{\perp} = 120$ mT)
 - orientation ensured by WL-signature
 - LockIn, 10nA bias
 - flake A: 3.2 kΩ contact resistance
 - flake B: 4-wire measurement
\[\hat{H} = v \Pi_z \otimes \sigma \mathbf{p} - \mu [\sigma_x(p_x^2 - p_y^2) - 2\sigma_y p_x p_y] \]

\[\Sigma_x = \Pi_z \otimes \sigma_x, \quad \Sigma_y = \Pi_z \otimes \sigma_y, \quad \Sigma_z = \Pi_0 \otimes \sigma_z, \]

\[\Lambda_x = \Pi_x \otimes \sigma_z, \quad \Lambda_y = \Pi_y \otimes \sigma_z, \quad \Lambda_z = \Pi_0 \otimes \sigma_0. \]

\[\Delta \rho(B) = -\frac{e^2 \rho^2}{\pi h} \left[F\left(\frac{B}{B_\varphi} \right) - F\left(\frac{B}{B_\varphi + 2B_i} \right) - 2F\left(\frac{B}{B_\varphi + B_*} \right) \right] \]

\[F(z) = \ln z + \psi \left(\frac{1}{2} + \frac{1}{z} \right), \quad B_{\varphi,i,*} = \frac{\hbar c}{4De^{-\tau_{\varphi,i,*}}} \]

\[\psi \text{ is the digamma function} \]

[McCann et al.; PRL 97, 146805 (2006)]
magnetoconductance

- g averaged over density range
- evaluated by
 \[
 \Delta g_{\text{WL}}(B_\perp) = \frac{e^2}{\pi \hbar} \left[F\left(\frac{\tau_B^{-1}}{\tau_\phi^{-1}}\right) - F\left(\frac{\tau_B^{-1}}{\tau_\phi^{-1} + 2\tau_i^{-1}}\right) - 2F\left(\frac{\tau_B^{-1}}{\tau_\phi^{-1} + \tau_i^{-1} + \tau_s^{-1}}\right)\right],
 \]
- results for $B_\parallel = 0$:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Hole</th>
<th>Flake B Low density</th>
<th>Electron</th>
<th>Flake A Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$10^{11}/\text{cm}^2$</td>
<td>$-13 \ldots -5$</td>
<td>$-2 \ldots 2$</td>
<td>$5 \ldots 13$</td>
<td>$-5 \ldots -3$</td>
</tr>
<tr>
<td>W/L</td>
<td>\ldots</td>
<td>2.4 ± 0.8</td>
<td>2.0 ± 0.7</td>
<td>1.6 ± 0.6</td>
<td>0.7 ± 0.3</td>
</tr>
<tr>
<td>τ_m^{-1}</td>
<td>$10^{12}/\text{s}$</td>
<td>15 ± 5</td>
<td>20 ± 10</td>
<td>15 ± 5</td>
<td>11 ± 5</td>
</tr>
<tr>
<td>τ_s^{-1}</td>
<td>$10^9/\text{s}$</td>
<td>11 ± 1</td>
<td>35 ± 8</td>
<td>11 ± 1</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>τ_i^{-1}</td>
<td>$10^9/\text{s}$</td>
<td>70 ± 50</td>
<td>170 ± 70</td>
<td>120 ± 80</td>
<td>20 ± 10</td>
</tr>
<tr>
<td>τ_s^{-1}</td>
<td>$10^{12}/\text{s}$</td>
<td>5.3 ± 0.4</td>
<td>2.7 ± 0.5</td>
<td>2.1 ± 0.4</td>
<td>4.0 ± 0.3</td>
</tr>
</tbody>
</table>
- changes in conductance for low B_{\perp}
- for various B_{\parallel}
- at different density ranges

fitting with dephasing rate as the only free parameter:

$$\tau_{\phi}^{-1} \rightarrow \tau_{\phi}^{-1} + \sqrt{\frac{\pi}{\hbar^2}}(e^2/\hbar^2)vZ^2RB_{\parallel}^2$$

- good agreement with predicted dependence on B_{\parallel}^2
high B_\perp regime

- change in Drude conductivity:
- higher momentum scattering rate due to Lorentz forces from the RVP
- predicted anisotropy

$$\Delta \rho(n, \theta, B_\parallel) = \frac{\sin^2 \theta + 3\cos^2 \theta}{4} \frac{1}{\hbar|n|^{3/2}} \frac{Z^2}{R} B_\parallel^2$$

- nicely fits density dependence
- anisotropy confirmed by high density average for different angle between current and B_\parallel

however: extracted ripple topography ($Z=0.6 \pm 0.1$ nm, $R=4 \pm 2$ nm)

does not match AFM and STM studies ($Z=0.2 \pm 0.1$ nm, $R=5 - 32$ nm)

- possible influence of spin orbit effects (intrinsic, Rashba, ripples)?