Adiabatic Cooling with Non-Abelian Anyons

G. Gervais1 and Kun Yang2

\textbf{Physical Review B 81, 245319 (2010)}

Thermopower of two-dimensional electrons at filling factors $\nu=3/2$ and $5/2$

W. E. Chickering,1 J. P. Eisenstein,1 L. N. Pfeiffer,2 and K. W. West2

\textbf{FMM}

27 Aug 2010

Tony Clark
intro

• interested in non-abelian anyons as intrinsically fault-tolerant systems for quantum information storage & processing
 – local fluctuations (e.g., precise location of quasiparticles) do not affect the topology of a particular quantum state

• goals for today
 – present short theory paper proposing a technique we can use to demonstrate non-abelian character of quasiparticles in the $\nu = 5/2$ state
 – review a related experiment that shows promise for investigating the $\nu = 5/2$ state ‘in the bulk’, in order to complement electron transport studies (‘at the edge’)

anyons

• exchanging two QM particles produces a phase factor in the wave function
 – boson: exp[i2πn] = 1
 – fermion: exp[iπ(2n+1)] = -1
 – anyon: exp[iθ] = anything because θ = anything

• anyons only occur in 2d (or not? PRL 104, 046401 (2010))
 – topology matters…2d systems with singularities are not simply connected
 – in the FQHE picture, particles encircling one another pick up a phase that depends on their charge and magnetic flux
abelian/non-abelian statistics

• abelian: particle exchanges commute
 \[X_{12}X_{23}|abc> – X_{23}X_{12}|abc> = X_{12}|acb> – X_{23}|bac> \]
 \[= \exp[i\theta_{23}]X_{12}|abc> – \exp[i\theta_{12}]X_{23}|abc> \]
 \[= \exp[i\theta_{12}+i\theta_{23}]|abc> - \exp[i\theta_{12}+i\theta_{23}]|abc> = 0 \]

• non-abelian: particle exchanges don’t commute
 – degenerate set of states, represented by a vector, with particles at fixed positions
 – exchanges represented by matrices, which don’t commute
 \[
 \begin{pmatrix}
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 a \\
 b \\
 c
 \end{pmatrix}
 \neq
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 a \\
 b \\
 c
 \end{pmatrix}
 \]

arXiv:0707.1889v2
the theory paper

• simple concept:
 – note: non-abelian quasiparticles, if present in the $\nu = 5/2$ state, produce a temperature-independent entropy (due to ground state degeneracy)

$$S_{tot} = S_D + S_n(T) = k_B \ln[D] + S_n(T) \sim N_q k_B \ln[d] + S_n(T)$$

 – step 1: isolate system
 – step 2: change S_D by adiabatically tuning some parameter (N_q)
 – observation: S_{tot} cannot change, so $\Delta S_D = -\Delta S_n(T) \Rightarrow T$ changes!

• tune N_q with magnetic field or electron density

$$S_D = (e/e^*)(\Delta B/B_0)N_e k_B \ln[d]$$
the theory paper

• isolate system?
 – cooling 2DEGs in GaAs heterostructures is difficult below 50mK due to weak e-p coupling (and freezing out of phonons)
 – additionally, one can use a SC heat switch as part of the electrical leads

• tune N_q?
 – changing $B \rightarrow$ possible eddy current heating
 – perhaps changing n_e is more promising

• significant change in T? depends on entropies
 – large S_D…D only large for $T > T_0$
 – small $S_n(T)$…wigner crystal formed at $T < T_m$

\[S_n(T) \approx \alpha N_e k_B \frac{e}{e^*} \frac{\Delta B}{B_0} \left[\frac{k_B T}{E_0(\Delta B)} \right]^{4/3} \]

 – S_n might be small at higher temperatures as well…$T < T^*$
the theory paper

\[
\frac{dT}{d\Delta B} = \frac{3T}{4\Delta B} \left\{ 1 - \frac{\ln d}{\alpha} \left[\frac{E_0(\Delta B)}{k_B T} \right]^{4/3} \right\}
\]

- increase \(\Delta B \), decrease \(T \)

\[
\frac{dT}{d\Delta B} < 0
\]

- cooling power increases with decreasing \(T \)

\[
\frac{dT}{d\Delta B} \propto -T^{-1/3}
\]

- lastly, and most importantly, if quasiparticles obey abelian statistics...

\[
\frac{dT}{d\Delta B} = \frac{3T}{4\Delta B} > 0
\]
the theory paper

- cooling power estimate for sample & parameters in the PRB we will discuss
 - $T_0 \sim 10\text{mK}$, $T_m \sim 11\text{mK}$, $T^* \sim 75\text{mK}$
 - $\dot{Q}_{n-\text{Abelian}} \approx -0.1\text{fW}$, which can be larger than joule heating values(?)
the experimental paper

• measurement of 2DEG thermopower

• sample:
 – $n_e \sim 2.9 \times 10^{11}$ cm$^{-2}$
 – $\mu \sim 31 \times 10^6$ cm2/Vs
 – $L = 12$ mm by $W = 3$ mm
 – 2 mesas, each 3x3mm2

• protocol:
 – measure thermal conductance of wafer (not described today)
 – at different T, apply heat pulses (square wave) to establish time-dependent temperature gradient
 – voltage along 2DEG measured with dc nanovoltmeter
 – obtain average T from integrated thermal conductance
 – plot $-S$ versus T
the experimental paper

- measurement of 2DEG thermopower
 - this property is closely related to the entropy (they are proportional)
 - states investigated: $B = 0$, $\nu = \frac{3}{2}$, $\nu = \frac{5}{2}$
- results for first two...note, seebeck coefficient:

$$S = -\frac{\Delta V}{\Delta T}$$

$$S^d = -\frac{\pi k_B^2}{3e N \hbar^2} m^*(1 + \alpha) T$$

$$S_{CF}^d = -\frac{\pi k_B^2}{6e N \hbar^2} (1 + \alpha) T$$

![Graphs showing thermopower versus temperature for different states](image1)

- $B = 0$, drude model
- $\nu = \frac{3}{2}$, fermi liquid of CFs
the experimental paper

- lastly, the $\nu = 5/2$ state ($B_0 \sim 4.8T$)
- energy gap at fermi level should strongly suppress the entropy at low T, perhaps $S_{5/2} \sim \exp[-\Delta_{5/2}/2T]$?
the experimental paper

- arrhenius plot yields $\Delta_{5/2} \sim 450\text{mK}$ for R_{xx} and $\Delta_{5/2} \sim 370\text{mK}$ for $-S$
the experimental paper

- minimum $T \sim 82\text{mK}$, which is approaching the calculated T^* in the PRL
 - it appears there is already a non-negligible entropy (proportional to y-intercept in graph) from the quasiparticles that is independent of T
conclusions

• sizeable entropy from non-abelian anyons predicted in ultra-clean 2DEGS for the \(\nu = 5/2 \) state

• could detect this in either an adiabatic cooling experiment, or via the thermopower
 – relevant T range: between 1 and 100mK

• evidence from thermopower measurements is already available, suggesting a finite \(S_D \)
 – T needs to be reduced in this experiment