Quantum ground state and single-phonon control of a mechanical resonator

NATURE, *464*, 679 (2010)

Department of Physics, University of California, Santa Barbara, California 93106, USA.
Overview

- quantum mode is cooled to its ground state (using a mechanical oscillator)

- coupling of the mechanical resonator to a qubit

- creation of single quantum excitations in the resonator

- quantum mechanics applies to macroscopic mechanical objects
Challenge:

- goal: use of a mechanical system to demonstrate QM

- approaches: measuring a single mechanical resonance

- but: cooling a mechanical resonance to its quantum ground state requires: $T < \frac{\hbar f}{k_B}$
 $\rightarrow f = 1 \text{ kHz} \rightarrow T < < 50 \text{nK}$

O`Connell et al.:

resonator with an isolated mechanical mode near 6 GHz
$\rightarrow 0.1 \text{K}$ are enough to reach ground state
resonator measurement via superconducting qubit

suspended film bulk acoustic resonator made of piezo Al / AlN / Al

classical transmission of a mechanical resonator

\[f_s = \frac{1}{2} \pi (L_mC_m)^{1/2} \approx 6.07\text{GHz} \]

\[f_r = \frac{1}{2} \pi (L_mC_S)^{1/2} \approx 6.10\text{GHz} \]
Qubit spectroscopy

\[\Delta E = E_e - E_g \]
\[f_q = \frac{\Delta E}{h} \]
\[5 \text{ GHz} < f_q < 10 \text{ GHz} \]

\[\Omega = \frac{2g}{h} = 124 \text{ MHz} \]
microwaves coupled to resonator via C_x instead through qubit

- mechanical resonator \equiv narrow band pass filter
 \rightarrow qubit excitation only near f_r

- additional feature for high flux bias
 \rightarrow qubit state ejection due to highly excited resonator
so far classical measurements

now: using the qubit to probe the energy state of the resonator without microwave signal applied

qubit = quantum thermometer

1) prepare qubit in $|g\rangle$

2) flux bias to place qubit within $\Delta = f_q - f_r$ for 1μs

3) take qubit out of Δ and measure P_e

\rightarrow qubit remains in $|g\rangle$ for all Δ

\rightarrow $\langle n \rangle \ll 1$

\rightarrow resonator is in its ground state
quantum excitations – entangled qubit-resonator quantum state

a

- Mechanical resonator
- Qubit
- Meas.

b

- Qubit excitation is exchanged with a phonon in the resonator

minima: transfer of the excitation from the qubit to the resonator

maxima: return of excitation from the resonator to the qubit
Resonator energy relaxation time

injecting a single phonon into the resonator and measuring its decay

→ \(T_{1r} \approx 6.1 \) ns

Resonator dephasing time

→ \(T_{2r} \approx 20 \) ns > 2\(T_{1r} \)

(complicated exp with high error probability)
bosonic nature of the resonator:

1) microwave excitation of resonator while qubit out of resonance

MW amplitude varies

2) qubit in resonance for a time \(\tau \)

3) \(P_e \) in dependence of MW amplitude and interaction time

→ increasing frequency in \(P_e \) oscillations with increasing MW frequency

swap frequency between qubit and resonator \(\sim (\langle n \rangle)^{1/2} \)

→ bosonic
Conclusion

- mechanical resonator is cooled to its ground state

- coupling of the mechanical resonator to a qubit

- creation of single quantum excitations in the resonator

- creation of entanglement between resonator and qubit

- quantum mechanics applies to macroscopic mechanical objects