A Coherent Beam Splitter for Electronic Spin States

J. R. Petta, et al.
Science 327, 669 (2010);
DOI: 10.1126/science.1183628

Tony Clark
Friday Meeting
16 Apr ‘10
Main Point

- Coherent control of electronic spin states demonstrated by sweeping the detuning back and forth through the $S-T_\uparrow$ anti-crossing
Sample & Dings

- GaAs/AlGaAs
 - 2DEG 110 nm below surface
 - n = 2 \times 10^{11} \text{ cm}^{-2}, \mu = 200,000 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}

- Ti/Au gates
 - 3 QD pattern \rightarrow 2 QDs + 1 QPC
 - QPC defined by Q_1 and Q_2
 - g_Q measured with 1 nA bias (standard lock-in technique)
 - lever arm = 0.16 \mu\text{eV}\text{mV}^{-1} \rightarrow T_e = 90 \text{ mK} (T_{MC} = 8 \text{ mK})
Sample & Dings

- **Ti/Au gates**
 - pulsing of L and R to move between points in charge stability diagram
 - ~1.1 ns voltage pulses smoothed with passive filters
 - interested in \((N_L, N_R) = (1,1)-(2,0)\) transition

- **Anti-crossing due to hybridization**
 - gap = \(2\Delta\)
 - in this experiment, \(|0\rangle = |S\rangle\) and \(|1\rangle = |T_{+/}\rangle\)

- **Perpendicular magnetic field**
 - controls \(T_-, T_0, T_+\) Zeeman splitting
Measurement of 2Δ

- Initialize $(2,0)S$ state at point P
 - $[P_S = 1]$
- Move quickly to $\varepsilon_{P'}$
- Pulse to ε_S (preserves singlet)
- Ramp back to $\varepsilon_{P'}$ over time T_R
- Measure P_S
Measurement of 2Δ

- **Long T_R** approaches adiabatic limit
 - should yield $P_S = 0$ (i.e., triplet)
 - spin relaxation repopulates singlet
 (therefore, P_S minimum ~ 0.3)

- **Short T_R**
 - exponential \rightarrow Landau-Zener*
 - ramp-rate dependent transition
 probability, $P_{LZ} \sim \exp[-2\pi\Delta^2/\hbar v] \sim e^{-T_R}$
 - $2\Delta = 120$ neV

* arXiv:0911.1917v1
Beam Splitting & Interference

- Method:

\[\phi = \frac{1}{\hbar} \int \{ E_S[\epsilon(t)] - E_{T+}[\epsilon(t)] \} dt \]
Unitary Operations

\[U |S\rangle = \left(\begin{array}{c}
\sqrt{1 - P_{LZ}} e^{i(\phi_S - \pi/2)} \\
- i\sqrt{P_{LZ}} \\
i\sqrt{P_{LZ}} \\
\sqrt{1 - P_{LZ}} e^{-i(\phi_S - \pi/2)}
\end{array} \right) \left(\begin{array}{c} 1 \\
0 \\
0 \\
0 \end{array} \right) = \left(\begin{array}{c}
\sqrt{1 - P_{LZ}} e^{i(\phi_S - \pi/2)} \\
i\sqrt{P_{LZ}} \\
\end{array} \right) \]
Interference of Two Beams

- P_S as a function of τ_S for ε_S amplitudes
 - $B_E = 100$ mT
- St"uckelberg oscillations
 - $P_S \sim 1 - 4P_{LZ}(1-P_{LZ})\sin^2(\phi_S/2)$?

![Graph showing interference of two beams with plots illustrating the relationship between P_S, ε, and τ_S.](image)
Interference of Two Beams

- Full picture of τ_S and ε_S
- Bright fringe corresponds to alignment of ε_S with $S-T_+$
B_E Dependence

- Negative shift of \(\varepsilon_S \) and lower frequency
Conclusions

• Beam splitter realized by sweeping ε through the (1,1)-(2,0) transition of a two-electron, double QD system

• Coherent rotations between singlet and triplet states...
 – occur on nanosecond timescales
 – controllable by local gate voltage pulses
 – feasible to scale up