Gap opening in the zeroth Landau level of graphene

A. J. M. Giesbers,1 L. A. Ponomarenko,2 K. S. Novoselov,2 A. K. Geim,2 M. I. Katsnelson,3 J. C. Maan,1 and U. Zeitler1,4

1High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
2Department of Physics, University of Manchester, M13 9PL Manchester, United Kingdom
3Theory of Condensed Matter, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

(Received 6 April 2009; revised manuscript received 6 August 2009; published 11 November 2009)

We have measured a strong increase of the low-temperature resistivity ρ_{xy} and a zero-value plateau in the Hall conductivity σ_{xy} at the charge neutrality point in graphene subjected to high magnetic fields up to 30 T.

FMM Charulata Barge, 12-02-2010
Graphene

"Graphene is a single planar sheet of sp²-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. From a physicist point of view, graphene is the basic structural element for all other graphitic materials including graphite, carbon nanotubes and fullerenes." (Wikipedia)

"Electrons in graphene, obeying a linear dispersion relation, behave like massless relativistic particles. This results in the observation of a number of very peculiar electronic properties - from an anomalous quantum Hall effect to the absence of localization. It also provides a bridge between condensed matter physics and quantum electrodynamics, and opens new perspectives for carbon-based electronics." (M.I. Katsnelson)
Charge Neutrality point
Monolayer graphene on Si/SiO$_2$
Doped Si
Annealed at 390K
μ = 0.47 m2/Vs to 1 m2/Vs
= 1 nA at 400 mk
Gap opening in 0th LL-T and B-field dependence

At $B=0$, $E=\pm\hbar|k|$.

$B \neq 0 \quad E_N=\pm c(2e\hbar N)^{1/2}$, $N \geq 1$, four fold degenerate.

0th LL @ $N=0$ half filled with electrons and half filled with holes.

FMM Charulata Barge, 12-02-2010
Arrhenius plot $\sigma_{xx} = \exp(-\Delta_a/k\Gamma)$
$\Gamma_0 = 30K$
Gap opening in 0th LL-Model

DOS
N=0, 2eB/h
N\neq 0, 4eB/h

Kubo Greenwood formalism for disorder

\[\rho_{xx} = \frac{\sigma_{xx}}{\left(\sigma_{xx}^2 + \sigma_{xy}^2\right)} \rightarrow 0 \]
Gap opening in 0th LL-Model- Symmetry breaking and interaction induced gap

Symmetry Breaking at CNP:-
ν=−2 plateau with $\rho_{xy}=−h/2e^2=12.9$ kΩ
to the ν=+2 plateau at $\rho_{xy}= h/2e^2$
electrons and holes coexist below and above the CNP
graphene behaves as a compensated semimetal

Interaction induced gap:-
$I=e^2/4\pi\varepsilon_0\varepsilon_rB =1400$ K at 30 T
exceeds width of the 0 energy LL Γ_0 by two orders
of magnitude.

FMM Charulata Barge, 12-02-2010
Gap opening in 0th LL- Conclusions

- Observed transport properties of 0th LL at low T, high B
- Strong increase in longitudinal resistance with a zero crossing in the Hall resistivity at the CNP
- A flat plateau in the Hall conductivity with a thermally activated minimum in the longitudinal conductivity.
- Opening of a gap in the density of states of the 0th LL,
- Field dependent splitting of the lowest LL
- Co-existance of electrons and holes in split zero energy LL