Cooper pair splitter realized in a two-quantum-dot Y-junction

L. Hofstetter¹*, S. Csonka¹,²*, J. Nygård³ & C. Schönenberger¹

Punchlines:

1. Constructed an EPR pair generator and tunable splitter in condensed matter system

2. Split pair and measure nonlocal correlations

FMM
18/12/09

Tony
Clark
Idea

- Cooper pair = two particles with entangled states
- Separate particles
- If states remain entangled, they have nonlocal properties
 - measure the state of one, project the state of the other (…correlations)
Device

- (Cooper pair) *source = Al*
 - 150nm wide
 - in situ Ar sputtering removes native oxide layer
- *splitter = InAs nanowire*
 - ~90nm dia \(\times\) >1.5\(\mu\)m length
 - two QDs formed by individual top gates, 100nm wide
- *drain = metallic leads to ground*
 - 300nm wide
 - in situ Ar sputtering…
Measurement Conditions

- $T_{\text{fridge}} = 20\text{mK}$
- Filtering:
 - room temp filters \rightarrow pi
 - low temp filters \rightarrow tapeworm
- $V_{\text{SD}} \rightarrow$ ac + dc
 - $V_{\text{dc}} \sim \text{mV}$ for QD characterization
 - $V_{\text{dc}} = 0$ for nonlocal measurements
 - $5 < V_{\text{ac}} < 10\mu\text{V}$
 - $127 < f < 600\text{Hz}$
Measurements

- $\frac{dI_1}{dV_{SD}}$ vs. V_{g1}
 - Coulomb diamonds
 - suppressed electron density of states in the SC gap

- Go to one point (yellow dot) and look for correlations between G_1 and G_2…
(Nonlocal) Measurements

- G_1 vs. V_{g2}
 - gate 2 is coupled to QD1 (~1000 times weaker than to QD2)
 \rightarrow linear background
 - averaged 143 (black) traces
 \rightarrow one (red) trace
- ΔG_1 & G_2 vs. V_{g2}
 - definite correlation exists
(Nonlocal) Measurements

- $\Delta G_1 \& G_2$ vs. V_{g2}
 - “imperfect” because of finite R_W of source lead

- Al...
 - normal vs. superconducting

- Next step: tune* the splitter...
(Nonlocal) Measurements

• ΔG_1 & G_2 for varying V_{g1}
 – pos/neg crossover approaching CB resonance
 – size of ΔG_1 “too large”

• efficient pair splitting predicted off resonance (well-defined #elec)

• $\Delta G_1 \sim \alpha T_1^2 + p(\delta r)T_1T_2$
 • perhaps due to $\delta r, k_F$
(Nonlocal) Measurements

- Temperature dependence of ΔG_1
 - nonlocal conductance disappears near 200mK (\ll SC gap)

- apparently not controlled by bulk gap alone
Conclusions

• Tunable EPR pair splitter achieved experimentally in two-quantum-dot / superconductor Y-junction
• Pair splitting efficiency of $\sim 2\%$ is much greater than for entangled photon pairs ($\sim 10^{-12}$)
• First step toward demonstration of EPR paradox in a solid state system