Delocalization by Disorder in Layered Systems

Dmitrii L. Maslova, Vladimir I. Yudsonb, Andres M. Somozac, and Miguel Ortuñoc

aDepartment of Physics, University of Florida, P. O. Box 118440, Gainesville, FL 32611-8440
bInstitute for Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 142190, Russia
cDepartamento de Física-CIOyN, Universidad de Murcia, Murcia 30.071, Spain

(Dated: April 30, 2009)

Disordered Conductors

more disorder, more resistance
• incoherent: more scattering, more resistance
• coherent: enhances localization, more resistance

common belief: localization destroyed only by inelastic scattering

This Letter: that’s wrong, i.e.
more disorder, **less resistance** (in some cases)
(simple model with two types of disorder)
System considered

Model: two types of disorder
a) layers (1D)
b) bulk disorder (3D)

Graphene
NaCo$_2$O$_4$
cuprates
etc

naively $\frac{\sigma_{||}}{\sigma_{\perp}} \sim \left(\frac{m^*_{||}}{m^*_{\perp}} \right)^{-1}$
in absence of bulk disorder, $V(x, y, z) = 0$

in- and out-of-plane degrees of freedom **separate**

$$\varepsilon(\vec{k}_||, k_z) = \varepsilon_||(\vec{k}_||) + \varepsilon_z(k_z)$$

in a 1D (disorder) potential $U(z)$

$$\Psi(\vec{r}_||, z) = \varphi(\vec{r}_||) \chi(z)$$

with eff. 1D Schroedinger eq. for χ

$$[\varepsilon_z(-i\partial_z) + U(z)] \chi(z) = \left(E - \varepsilon_||(\vec{k}_||) \right) \chi(z)$$

• infinitesimally weak disorder $U(z)$ **localizes all states**, i.e. $\sigma_{zz} = 0$
 1D localization in z-direction

• $U(z)$ does not affect motion $||$, $\sigma_{||}$ infinite (no bulk disorder)
Add bulk disorder $V(x, y, z)$

- Mixes in- and out-of-plane degrees of freedom, no separation of variables
- 1D localization z-direction destroyed
- σ_{zz} increases with bulk disorder (while weaker than planar disorder)
 σ_{zz} peaks when disorders similar
 σ_{zz} decreases upon further increase of bulk disorder
- $\sigma_{||}$ decreases monotonously with bulk disorder

Rest of paper: confirm this prediction with
a) Anderson model (numerical)
b) analytical, using Berezinskii solution 1D localization
Anderson Model

\[H = - \sum_{i,j} a_j^\dagger a_i + \sum_i \epsilon_i a_i^\dagger a_i + \text{H.c.} \]

hopping on site

on-site energy \(\epsilon_i = \phi_i + \eta_{i_z} \) and \(i = (i_x, i_y, i_z) \)

\(\phi_i \) bulk disorder, random in interval \((-W_B/2, W_B/2) \)

\(\eta_{i_z} \) planar disorder, W or \(-W\) with probability 0.5
FIG. 2: (Color online) Out-of-plane conductance versus the bandwidth of bulk disorder W_B for a range of values of planar disorder W, as shown in the figure, and $L = 30$.
FIG. 3: (Color online) Out-of-plane conductivity versus the bandwidth of bulk disorder W_B on a double logarithmic scale for a range of system sizes, as shown in the figure, and three values of planar disorder: $W = 1.5$ (upper set), $W = 2$ (middle set), and $W = 2.5$ (lower set).
Analytical Solution

\[
\sigma_{zz}(\omega) = \frac{e^2}{2\pi} \frac{1}{A^3} \sum_{\vec{k}_{||}, \vec{k}'_{||}} \int d\vec{z}'
\times \langle \langle v_z G_+^R(\vec{k}_{||}, z; \vec{k}'_{||}, z') v'_z G_-^A(\vec{k}'_{||}, z'; \vec{k}_{||}, z) \rangle_p \rangle_b ,
\]

\[
\begin{align*}
\langle \begin{array}{c}
\sim \\
\sim
\end{array} \rangle & = \langle \begin{array}{c}
\sim \\
\sim
\end{array} \rangle + \langle \begin{array}{c}
\sim \\
\sim
\end{array} \rangle + \langle \begin{array}{c}
\sim \\
\sim
\end{array} \rangle + \langle \begin{array}{c}
\sim \\
\sim
\end{array} \rangle.
\end{align*}
\]
Summary

Disordered Conductors

more disorder, more resistance
• incoherent: more scattering, more resistance
• coherent: enhances localization, more resistance

common belief: localization destroyed only by inelastic scattering

This Letter: that’s wrong, i.e.
more disorder, less resistance (in some cases)
(simple model with two types of disorder)