Current-induced nuclear-spin activation in a two-dimensional electron gas

C.R. Dean1, B.A. Piot1, G. Gervais1, L.N. Pfeiffer2 and K.W. West2
1Department of Physics, McGill University, Montreal, H3A 2T8, CANADA and
2Bell Laboratories, Alcatel-Lucent Inc., Murray Hill, NJ 07974 USA
Introduction

- Electrical detection of NMR
 - Zeeman energy (gap)
 \[\Delta_Z = g^* \mu_B (B + B_N) \]
 - RF pulse destroys \(B_N \)
 \(\Rightarrow \) effective field \(\uparrow \)
 \(\Rightarrow \) longit. Res \(\downarrow \)
 \[R_{xx} \propto e^{-\frac{\Delta}{2kT}} \]
 - alternative: wiggle around on the slope of \(R_{xx} \)-peak

- picture too simple
 - “…”anomalous dispersive” lineshape…of unknown origin…”
 - “…peak only response…”
Sample and Set-up

- 2DEG in 40nm quantum well
- mobility: 16.6×10^6 cm2/Vs
- density: 1.6×10^{11} cm$^{-2}$
- Lock-in parameters 10Hz, 10nA
- T is T_e calibrated against CMN + supercond. fixed point, corrected for non-resonant RF
- NMR: 75As (same for Ga [8,14])
Re-entrance

- $T_e=34\text{mK}$
- $I_{dc}=0$ (?)
- Scanning time 10h
- 10min between lines
Heating vs. Current (1)
Heating vs Current (2)
Summary

- dc-current induced re-entrance of anomalous dispersive signal
- two mechanisms/reasons for the signals:
 - thermal activation at low T / small I_{dc}
 - current intensity
- current-induced nuclear spin enhancement
- some things to be edited
 - e.g. caption Figure 1 (I_{dc}=0?)
 - What’s the dashed line in Figure 3(a)?
 - What are the solid lines in Figure 2(c+d)?
 - What are the frequencies of the normalised minima and peaks in Figures 1(c) and 3(c+f)?