Nuclear Magnetism and Electronic Order in 13C Nanotubes

Bernd Braunecker,1 Pascal Simon,1,2 and Daniel Loss1

1Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
2Laboratoire de Physique et Modélisation des Milieux Condensés, CNRS and Université Joseph Fourier, BP 166, 38042 Grenoble, France

(Dated: August 12, 2008)

arXiv:0808.1685v1

\begin{itemize}
 \item pure 13C SWNT, \textbf{metallic}
 \item Stable isotopes: 12C \textit{S} = 0 \quad 98.9 \% abundance
 13C \textit{S} = $1/2$ \quad 1.1 \%
 \item hyperfine interaction couple electrons \& nuclei, $A =$?
 0.1 to 1 μeV dep. on curvature, Pennington et al., RMP 1996
 100 μeV Churchill et al., arXiv0811.3236v1
\end{itemize}
• electrons mediate interactions between nuclei (RKKY)
• 1D system (analogous, different, stronger compared to 2,3D)
• Electron correlations -> Tomonaga-Luttinger Liquid (interacting electrons)
• direct nuclear dipole-dipole interaction very weak (~10 peV), neglected

• single electronic mode

• circular cross section: identical overlap, identical spin alignment, i.e. ferromagnetic

• treat spins as 1D nuclear spin chain $I >> \frac{1}{2}$ spins (excludes Kondo spin $\frac{1}{2}$ physics)

$$\tilde{H} = H_{el} + A \sum_i \hat{S}_i \cdot \hat{I}_i$$

$$\hat{I}_i = (\hat{I}_i^x, \hat{I}_i^y, \hat{I}_i^z)$$ effective nuclear spin operator

$$\hat{S}_i = (\hat{S}_i^x, \hat{S}_i^y, \hat{S}_i^z)$$ electron spin operator
• hyperfine interaction couple electrons & nuclei, $A = ?$
 0.1 to 1 meV dep. on curvature, Pennington et al., RMP 1996
 100 meV Churchill et al., arXiv0811.3236v1

• $E_F = v_F k_F / 2$ meV to eV

 $k_F / \pi = n_{el}$
 $v_F \approx 8 \times 10^5$ m/s in SWNTs

• electron and nuclear time scales decouple $A/E_F << 1$
1D Physics in Armchair Carbon Nanotubes

1D conductor, with electron-electron interactions driven to Luttinger liquid

Interacting system of right- and left-moving electrons:

\[
H_{el} = \int dr \sum_{\sigma=\uparrow, \downarrow} \left[\psi_{R\sigma}^\dagger(r)(-i v_F \nabla) \psi_{R\sigma}(r) + \psi_{L\sigma}^\dagger(r)(+i v_F \nabla) \psi_{L\sigma}(r) \right]
\]

\[
+ \int dr dr' \sum_{\sigma \sigma' = \uparrow, \downarrow} \sum_{\nu \nu' = L, R} V(r - r') \psi_{\nu\sigma}(r) \psi_{\nu'\sigma'}(r') \psi_{\nu'\sigma'}(r') \psi_{\nu\sigma}(r)
\]

allows diagonalization through bosonization

Note: Absence of curvature in dispersion & high electron density → no Wigner crystal or incoherent Luttinger liquid
1D Physics in Armchair Carbon Nanotubes

After **bosonization** (single band notation here)

\[
H_{\text{el}} = \int \frac{dr}{2\pi} \sum_{\kappa=c,s} \left[\frac{\nu_\kappa}{K_\kappa} \left(\nabla \phi_\kappa(r) \right)^2 + \nu_\kappa K_\kappa \left(\nabla \theta_\kappa(r) \right)^2 \right]
\]

Luttinger parameter and renomalized charge / spin velocity

charge / spin density fluctuations

conjugated field

Typical values for nanotubes:

\[
K_c \approx 0.2 \quad K_s = 1 \quad v_{c,s} = \frac{v_F}{K_{c,s}} \quad v_F \sim 8 \times 10^5 \text{ m/s}
\]

\[
E_F = \frac{\hbar k_F v_F}{2} \sim 0.1 \text{ eV} \quad \text{tunable through bias}
\]
Effective Hamiltonian

\[H_{n}^{\text{eff}} = \frac{1}{2} \sum_{ij\alpha} J_{ij}^{\alpha} \hat{I}_{i}^{\alpha} \hat{I}_{j}^{\alpha} = \sum_{\alpha} \int_{0}^{\pi/a} dq \frac{d}{2\pi} J_{q}^{\alpha} \hat{I}_{-q}^{\alpha} \hat{I}_{q}^{\alpha} , \]
Single energy scale

Derivation of effective model is similar to

RKKY interaction

\[J_q = \frac{A^2a}{2} |\chi_s(q)| = -C T^{2g-2} |\Gamma(\kappa)/\Gamma(\kappa + 1 - g)|^2 \]

\[C = A^2 a \sin(\pi g) \Gamma^2(1 - g)(2\pi ak_B/v_F)^{2g-2}/4\pi^2 v_F \]

\[\kappa = g/2 - i\lambda_T(q - 2k_F)/4\pi \]

\[g = (K_c + 1/K_s)/2 \]

Theory depends on a single energy scale only

\[T^* = J_{2k_F}(T^*) \]

\[\lambda_T = v_F/k_BT \]
RKKY Interaction

Two consequences

1. Height and width of J_q are function of temperature curve characterized by a single parameter: T

Theory depends on a single energy scale only

$$T^* = J_{2k_F}(T^*)$$

2. max. of $|J_q|$ reached at $q = 2 k_F$: helical order favoured
Nuclear spin order

Helical order of nuclear spins

- 1D spin lattice of large effective spins
- no Kondo physics

Stable only in systems of finite length (quantum dot).

For typical nanotubes: \(T^* \sim 10 \, \mu K \)
Feedback is essential!

Nuclear magnetic (Overhauser) field

\[\langle I_i \rangle = \text{Im}(2k_F r_i) [e_x \cos(2k_F r_i) + e_y \sin(2k_F r_i)] \]

magnetization

Feedback on electrons

\[H_{Ov} = \sum_i A \langle I_i \rangle \cdot S_i = \sum_i A \text{Im}(2k_F) \cos(\sqrt{2}[\phi_c(r_i) + \theta_s(r_i)]) \]

Bosonization treatment; relevant sine-Gordon interaction

Opening of mass gap for \(\phi_+ \propto (\phi_c + \theta_s) \)
But a gapless field \(\phi_- \) remains!
Consequences

1. Modified RKKY interaction, T^*

- same shape
- modified exponents
 \[g \approx 0.7 \rightarrow g' \approx 0.3 \]

\[T^* \sim mK \]
Consequences

2. Anisotropy in electron spin susceptibility

Overhauser field defines spin \((x,y)\) easy-plane

\[
\chi^{x,y}(q) \sim \left| \frac{1}{q - 2k_F} \right|^{1 \over 2-g'} \quad g' \approx 0.33
\]

\[
\chi^{z}(q) \sim \left| \frac{1}{q - 2k_F} \right|^{1 \over 2-g''} \quad g'' \approx 0.17
\]
Consequences

3. Reduction of conductivity

Luttinger liquid connected to metallic leads

Conductance: \[G = T \frac{e^2}{h} n \]

number of conducting channels

Nanotube: \(n = 4 \) (2: spins; 2: unit cell has two C atoms)

With the feedback: \(\phi_+ \) field is pinned

Reduction to \[G = T \frac{e^2}{h} 2 \]

i.e. universal reduction of conduction in ordered phase