The Dynamic Nuclear Environment in a Double Quantum Dot

D. J. Reilly1, J. M. Taylor2, E. A. Laird1, J. R. Petta3, C. M. Marcus1, M. P. Hanson4 and A. C. Gossard4

1 Department of Physics, Harvard University, Cambridge, MA 02138, USA
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Department of Physics, Princeton University, Princeton, NJ 08544, USA
4 Department of Materials, University of California, Santa Barbara, California 93106, USA

Bahram ganjipour
Friday Morning Meeting
Jan. 18. 2008
Outline

- Motivation.
- Experiment Setup.
- Results.
Motivation

• GaAs/AlGaAs has non-zero nuclear spin → fluctuating effective Field B_{nuc}!

• Electron spin dephasing.

• Spin relaxation at a low applied field $B < B_{\text{nuc}}$.

→ investigation of Fluctuating nuclear field important
Experiment setup

Double QD is formed by:

- Ti/Au top gate an GaAs/Al$_{0.3}$Ga$_{0.7}$As
- 2DEG density : 2×10^{15}m$^{-2}$
- Mobility : 20m2/Vs
- T:=120mK
- G_{QPC} of rf-QPC is sensitive to the charge configuration.
Smaller negative detuning: Singlet and T_+ are degenerate.
Charge Configuration

rf-QPC readout, V_{rf}, around the (1,1)-(2,0) transition

- Inside the readout triangle triplet states remain blocked in (1,1), (B=0mT, $\tau_S = 25$ns)
Singlet Probability

- Average value of $P_S(\tau_S)$ at $B = 0, \tau_S = 2$ s. Red line is a fit to the theoretical gaussian form.

Average value of $P_S(\tau_M)$ showing contrast dependence, $\tau_S = 50$ ns.
Fluctuations of P_S

rf-QPC sensor output V_{rf} as a function of V_L and V_R

Similar to (b) but for $B = 0$

Similar to (b) but with S point at S-T$_+$ degeneracy, $B = 100$ mT
Power spectra of P_s

- BG measurement noise, $\tau_S = 1\text{ns}$ (1/f form)

For $B > 20 \text{ mT}$, the spectra become independent of B
Modeling the Fluctuation of P_s

- Theoretical assumptions:
- Dynamic Overhouser field → Fluctuations of P_s
- The classical Langvein eq., is used
- For $B >> B_{\text{nuc}}$, correlations of the Overhauser field can be evaluated analytically in terms of a dimensionless operator $A_{\beta z}$ for each nuclear spin species β,

$$\sum_{\beta} x^{\beta} \hat{A}_{\beta z} \equiv B_{nuc, z}^{l}/B_{nuc}$$

, similarly for right dot, with $x^{75}_{\text{As}} = 1, x^{69}_{\text{Ga}} = 0.6, x^{71}_{\text{As}} = 0.4$

$$\langle \hat{A}_{\beta z}^\beta (t + \Delta t) \hat{A}_{\beta z}^\beta (t) \rangle = \left[(1 + \Delta t D_{\beta}/\sigma_z^2) \right]^{1/2}$$

Δt: time difference

D_{β}: the species-dependent spin diffusion coefficient.

σ_z: wave function perpendicular to 2DEG

σ_\perp: wave function in the plane of 2DEG

Finally autocorrelation →

$$\langle P_S(t + \Delta t)P_S(t) \rangle - \langle P_S \rangle^2$$

$$= \frac{e^{-4G^2\langle \Delta \hat{A}_{\beta z}^2 \rangle}}{4} \left[\cosh(4G^2\langle \Delta \hat{A}_{\beta z}(t + \Delta t) \Delta \hat{A}_{\beta z}(t) \rangle) - 1 \right]$$

$$\langle P_S \rangle = \frac{1}{2}[1 + e^{-2G^2\langle \Delta \hat{A}_{\beta z}^2 \rangle}]$$

$G = \tau_S/T_{2}^*$
Modeling the Fluctuation of P_S

A fit of autocorrelation data at $B=100\,\text{mT}$

The fit parameters: C (contrast factor) and D (diffusion coefficient),

$\sigma_z = 7.5\,\text{nm}$, $\sigma_\perp = 40\,\text{nm}$ (from numerical simulation)

the fit gives $D \sim 10^{-13}\,\text{cm}^2/\text{s}$,
Effect of Power spectra of P_s
Summary

• τ_s acts to filter fluctuation:
 when $\tau_s>>T_2^*$, Low frequency correlations in ΔB_{nuc} are suppressed in Spectra of P_s.

• Experiment and theory both show reduced low-frequency spectral content as B decreases toward zero.

• Fluctuations are found to be broadband over the measurement bandwidth, 40 mHz to 1 kHz, and sensitive to an applied magnet field in the range $B = 0$ to 20 mT.
Thanks